Abstract:
A fine particle measuring method of performing optical measurement of fine particles introduced into a plurality of sample fluidic channels provided at predetermined distances on a substrate by scanning light to the sample fluidic channels is disclosed. The method includes: sequentially irradiating the light to at least two or more reference regions provided together with the sample fluidic channels; detecting a change of optical property occurring in the light due to the reference regions; and controlling timing of emission of the light to the sample fluidic channels.
Abstract:
There are provided a control device of an image reading apparatus, an operation method and an operation program thereof, and an image detection system capable of quickly and easily outputting an image having an appropriate density for analysis from an image reading apparatus. An image receiving unit (80) receives a pre-image output in pre-scanning performed before main scanning for outputting a main image for analysis in an image reading apparatus (11). A region information receiving unit (81) receives information of a region in the pre-image designated by a user. A calculation unit (83) calculates an appropriate voltage value (HVM) that is a voltage value of the photomultiplier (31) at which a density of the region becomes an appropriate density for analysis. A scanning conditions setting unit (84) sets the appropriate voltage value (HVM) as temporary scanning conditions (76M) of main scanning.
Abstract:
A sample comprising a first substance and a second substance is modified by breaking down molecular bonds of the second substance of the sample to form a modified sample having altered surface enhanced luminescence (SEL) characteristics to reduce overlapping of SEL characteristics of the first substance in the second substance. Surface enhanced luminescence data resulting from excitation of the modified sample is collected. Characteristics of the first substance based upon the collected surface enhanced luminescence data are identified.
Abstract:
Methods and systems for selecting one or more modes of an inspection subsystem or system for inspection of a specimen are provided. The systems described herein are configured to acquire output for all of the modes to be considered at a location of a known defect on the specimen by aligning output, which is generated at the location with a mode known to generate output in which patterned features on the specimen are resolved to a degree that allows the output to be aligned to design data, with the design data for the specimen to identify the location with substantially high accuracy and then without moving the field of view of the inspection subsystem or system from that location, acquiring the output for all other modes. All of the acquired output can then be used to select mode(s) for inspection of the specimen or another specimen of the same type.