Abstract:
There is described a printing press (1; 1*; 1**) comprising an ink-receiving cylinder (9; 8) receiving ink from an inking system (90-93, 90*, 93*; 95-99, 95*, 99*; 100-104, 100*, 104*) having a plurality of ink-applying cylinders or rollers (93, 93*; 99, 99*; 104, 104*) arranged one above the other around part of a circumference of the ink-receiving cylinder (9; 8), the ink-applying cylinders or rollers (93, 93*; 99, 99*; 104, 104*) being inked by a corresponding plurality of inking devices (90, 90*; 95, 95*; 100, 100*), the printing press (1; 1*; 1**) further comprising an inking carriage (52; 55; 57) supporting the plurality of inking devices (90, 90*; 95, 95*; 100, 100*), which inking carriage (52; 55; 57) can be moved with respect to the ink-receiving cylinder (9; 8) between a working position and a retracted position. The at least one selected inking device (90*; 95*; 100*) amongst the plurality of inking devices (90, 90*; 95, 95*; 100, 100*) of the inking system (90-93, 90*, 93*; 95-99, 95*, 99*; 100-104, 100*, 104*) is supported onto the inking carriage (52; 55; 57) via a movable frame (60; 65; 70), which movable frame (60; 65; 70) is supported by the inking carriage (52; 55; 57) to allow movement of the selected inking device (90*; 95*; 100*) with respect to the inking carriage (52; 55; 57) and with respect to a remaining part (90; 95; 100) of the plurality of inking devices (90, 90*; 95, 95*; 100, 100*).
Abstract:
There is described a sheet-fed or web-fed printing press for numbering and varnishing of security documents, including banknotes, comprising: —a numbering group (02) comprising at least one numbering unit (21, 22) for numbering printed material in the form of individual sheets or successive portions of a continuous web carrying multiple security imprints; and—a varnishing group (03; 03*) located downstream of the numbering group (02) for applying varnish onto recto and verso sides of the printed material, the varnishing group (03; 03*) comprising at least a first varnishing unit (31) disposed above a path of the printed material to apply varnish on the recto side of the printed material and at least a second varnishing unit (32) disposed below the path of the printed material to apply varnish on the verso side of the printed material.
Abstract:
Intaglio printing press systems for recto-verso intaglio printing of sheets, in particular for the production of banknotes and the like securities, wherein first and second intaglio printing presses are operatively-coupled to one another by a sheet processing and transporting system comprising an automated guided vehicle system for automatically transporting sheets from a sheet delivery station of the first intaglio printing press where recto printing is performed to a sheet feeding station of the second intaglio printing press where verso printing is performed.
Abstract:
There is described a cylinder body (10) for orienting magnetic flakes contained in an ink or varnish vehicle applied on a sheet-like or web-like substrate, which cylinder body (10) has a plurality of magnetic-field-generating devices (50, 60) disposed on an outer circumference of the cylinder body (10). The cylinder body (10) comprises a plurality of distinct annular supporting rings (40) distributed axially along a common shaft member (20), each annular supporting ring (40) carrying a set of magnetic-field-generating devices (50, 60) which are distributed circumferentially on an outer circumference of the annular supporting rings (40).
Abstract:
The sheet-fed or web-fed printing machine comprises a main unit (1), at least one mobile carriage (2) adapted to be coupled to the main unit for cooperation therewith during printing operations and to be moved away from the main unit during maintenance operations, a control unit for controlling displacement of said mobile carriage toward and away from said main unit, and an access zone (9, 9′) surrounding at least partly the mobile carriage for allowing a human operator to get access to the main unit and mobile carriage, which access zone lies outside of the displacement path (10) of the mobile carriage. The printing machine further comprises detection means (11) for monitoring the access zone and detecting presence of a human operator within the access zone. The control unit is operatively connected to the detection means so as to interrupt or prevent displacement of the mobile carriage in case presence of a human operator is detected within the access zone by the detection means and before the human operator penetrates in the displacement path of the mobile carriage.
Abstract:
There is described an ink wiping system (100) for an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102) positioned on and partly located in the wiping tank (101) to wipe excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100) comprises a supporting mechanism (200) coupled to the wiping roller assembly (102) and designed to move the wiping roller assembly (102) between a working position where the wiping roller assembly (102) is positioned on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a maintenance position where the wiping roller assembly (102) is moved out of the wiping tank (101) and away from the intaglio printing cylinder (80). Preferably, the wiping roller assembly (102) comprises a rotatable hollow cylindrical body (110) having an outer surface (110a) positioned to wipe the surface of the intaglio printing cylinder (80).
Abstract:
There is described a method for varnishing security documents, especially intaglio-printed security documents such as banknotes, wherein both sides of the security documents are covered by a protective varnish. The method comprises the step of applying a thicker layer of protective varnish on a side of the security documents which exhibits a greater surface roughness, especially the side which is opposite to the side of the security documents which was last printed by intaglio printing. Also described in a varnishing machine for carrying out the above method.
Abstract:
There is described a method for applying foil material (200) onto successive sheets (S), especially sheets of securities. In a first step, individual sheets (S) are transported in succession along a sheet transport path. In a second step, at least one continuous band of foil material (200) is applied onto the individual sheets (S) along a direction substantially parallel to a direction of displacement of the individual sheets, thereby forming a continuous flow of sheets linked to one another by the said at least one continuous band of foil material (200). In a third step, the said at least one continuous band of foil material (200) is cut by means of a laser beam such that the continuous flow of sheets is again separated into individual sheets (S) with portions of foil material (200*) remaining on the sheet. The cutting is performed at positions located on the sheets (S) such that said portions of foil material (200*) remaining on the sheets do not extend beyond leading and trailing edges of the sheets (S). Waste portions (205) of said at least one continuous band of foil material (200) that are not to remain on the sheets (S) are evacuated by aspiration, evacuation being carried out by direct aspiration of the waste portions (205) at least at a first position located downstream of and proximate to a cutting position where said at least one continuous band of foil material (200) is cut by the laser beam. There is also described an installation for carrying out the above method.
Abstract:
A method is described for generating patterns representing a halftone image, said method comprising the generation of a first set of patterns consisting of lines and curves dimensionally modulated so as to produce variations in tones reproducing the halftones of the image using an intaglio rendering technique. The method comprises the generation of a second set of patterns consisting of microstructures separate from the lines and curves of the first set of patterns, said microstructures being dimensionally modulated so as to produce variations in tones reproducing the halftones of the image. According to a first aspect of the invention, the microstructures consist of stochastic microstructures that can be likened to a grain. According to a second aspect of the invention, the microstructures consist of repetitive microstructures reproducing information that can be recognized by an observer, which repetitive microstructures comprise microletters and/or microsymbols. The second set of patterns is interlaced with the first set of patterns in such a way that the microstructures of the second set of patterns occupy the spaces between the lines and curves of the first set of patterns and so that the halftones reproduced by the second set of patterns supplement the halftones reproduced by the first set of patterns.
Abstract:
A method and system for controlled production of security documents, especially banknotes, wherein the security documents are subjected to a plurality of successive printing and processing operations on a plurality of processing stations. At least one production order is defined that may be subdivided into a plurality of production loads each being assigned a machine-readable load identifier. Selected processing stations are assigned to process the production order according to the production workflow. Each production load is selectively processed through the processing stations depending on the determined production workflow of the corresponding production order defined for each production load, whereby each production load is first subjected to a load acceptance procedure based on its machine-readable load identifier before being authorized to be processed on a selected processing station among the available processing stations.