Abstract:
Multiple sets of character data having termination characters are compared using parallel processing and without causing unwarranted exceptions. Each set of character data to be compared is loaded within one or more vector registers. In particular, in one embodiment, for each set of character data to be compared, an instruction is used that loads data in a vector register to a specified boundary, and provides a way to determine the number of characters loaded. Further, an instruction is used to find the index of the first delimiter character, i.e., the first zero or null character, or the index of unequal characters. Using these instructions, a location of the end of one of the sets of data or a location of an unequal character is efficiently provided.
Abstract:
A delivery device includes a substrate (201) formed in a coil (200); a plurality of cavities (202) for holding an active agent, the cavities (202) disposed along a length of the substrate (201) between an inner surface (304) and an outer surface (305) of the substrate (201) formed in the coil (200); and a plurality of seals (204) defining a closed volume of the cavities (202), wherein the seals (204) are configured for sequential opening of the cavities (202).
Abstract:
An electronic circuit device is provided, comprising a combined optical transmission and cooling fluid conduit network (100), wherein the network comprises at least one cooling conduit (101-103) that comprises an optical transmission medium (60), the network configured to convey a cooling fluid (50) via said at least one cooling conduit and an electromagnetic signal (70) via said optical transmission medium, such that the network is arranged in thermal communication with a first set of one or more components (11-15) of the electronic circuit device and in signal communication with a second set of one or more components (10-12a) of the electronic circuit device, and the first set and second set of component are at least partly overlapping. The corresponding method for conveying optical signal in such an electronic circuit device is also provided.
Abstract:
A method for processing a guest event in a hypervisor-controlled system (10), comprising the steps: (i) the guest event triggering a first firmware service being specific for the guest event in a firmware (70), the guest event being associated with a guest (20) and with a guest state (52) and a guest memory (22) encrypted with a guest key (24); (ii) the firmware (70) processing information associated with the guest event, comprising information of the guest state (52) and the guest memory (22), and presenting only a subset of the information of the guest state (52) and the guest memory (22) in decrypted form to a hypervisor (30), wherein the subset of the information is selected to suffice for the hypervisor (30) to process the guest event; (iii) the firmware (70) retaining a part of the information of the guest state (52) and the guest memory (22) that is not being sent to the hypervisor (30); (iv) the hypervisor (30) processing the guest event based on the received subset of the information of the guest state (52) and the guest memory (22) and sending a process result to the firmware (70) triggering a second firmware service being specific for the guest event; (v) the firmware (70) processing the received process result together with the part of the information of the guest state (52) and the guest memory (22) that was not sent to the hypervisor (30), generating a state and/or memory modification;(vi) the firmware (70) performing the state and/or memory modification associated with the guest event at the guest memory (22) in encrypted form.
Abstract:
A technique is provided for base recognition in an integrated device is provided. A target molecule is driven into a nanopore of the integrated device. The integrated device includes a nanowire separated into a left nanowire part and a right nanowire part to form a nanogap in between, a source pad connected to the right nanowire part, a drain pad connected to the left nanowire part, and the nanopore. The source pad, the drain pad, the right nanowire part, the left nanowire part, and the nanogap together form a transistor. The nanogap is part of the nanopore. A transistor current is measured while a single base of the target molecule is in the nanogap of the nanopore, and the single base affects the transistor current. An identity of the single base is determined according to a change in the transistor current.
Abstract:
Methods, apparatus and computer program products implement embodiments of the present invention that enable a computer to receive a request to allocate one or more logical regions to a logical volume, and to verify, in response to the request, an availability on one or more storage devices of a number of physical regions corresponding to the one or more requested logical regions. In response to the verification, the one or more logical regions can be activated for write operations to a cache, so that any data written to the logical regions is stored to the cache. Subsequent to activating the one or more logical regions, one or more actual physical regions can be allocated to the logical volume. Upon allocating the one or more actual physical regions, any data stored in the cache can be destaged to the one or more actual physical regions.
Abstract:
Aspects of the present invention provide a solution for calibrating a model of a complex flow system. In an embodiment, a comparison is made between the output from the model and a set of observed values for each of a plurality of nodes in the complex flow system. An adjoint sensitivity is computed for each of the nodes based on the comparison. These computed adjoint sensitivities are used to adjust a set of coefficients of the models. This calibration process can be performed multiple times, periodically and/or continuously to maximize the accuracy of the model.
Abstract:
A method of performing congestion management in a network includes monitoring a congestion status at a switch in the network. It is determined at the switch that the congestion status indicates that there is congestion at the switch. Based on the congestion being related to data received at the switch from a source at a first rate, a first message is transmitted from the switch to the source requesting the source to send the data at a second rate that is slower than the first rate. Based on the congestion being related to data requests received at the switch from a destination at third rate, a second message is transmitted from the switch to the destination requesting the destination to request the data at a fourth rate slower than the third rate.
Abstract:
A thermal oscillator (10) for creating an oscillating heat flux from a stationary spatial thermal gradient between a warm reservoir (20) and a cold reservoir (30) is provided. The thermal oscillator (10) includes a thermal conductor (11) which is connectable to the warm reservoir (20) or to the cold reservoir (30) and configured to conduct a heat flux from the warm reservoir (20) towards the cold reservoir (30), and a thermal switch (12) coupled to the thermal conductor (11) for receiving the heat flux and having a certain difference between two states (S1, S2) of thermal conductance for providing thermal relaxation oscillations such that the oscillating heat flux is created from the received heat flux.
Abstract:
The present invention relates to a semiconductor device (1) for use in at least an optical application comprising: at least an optically passive aspect (2) that is operable in substantially an optically passive mode, and at least an optically active material (3) comprising at least a material that is operable in substantially an optically active mode, wherein: the optically passive aspect (2) further comprises at least a crystalline seed layer (4), the optically active material (3) being epitaxially grown in at least a predefined structure (5) provided in the optically passive aspect (2) that extends to at least an upper surface (4') of the crystalline seed layer (4), and the optically passive aspect (2) is structured to comprise at least a passive photonic structure (6), wherein the crystalline seed layer (4) comprises a crystalline wafer and wherein the optically active material (3) comprises at least one of: a III-V material and a II-VI material.