Abstract:
A temperature-compensated current source includes a first arm fixing a reference voltage, a second arm fixing a reference current, and a third arm providing an output current obtained by copying the reference current in a first current mirror. A second current mirror copies, in the voltage reference arm, the reference current while a voltage copying circuit copies the reference voltage at a node of the second arm connected to ground by a first resistor series-connected with n parallel-connected diodes. A second resistor is parallel-connected with the assembly formed by the first resistor series-connected with the n parallel-connected diodes.
Abstract:
A method for manufacturing a vertical power component on a silicon wafer, including the steps of growing a lightly-doped epitaxial layer of a second conductivity type on the upper surface of a heavily-doped substrate of a first conductivity type, the epitaxial layer having a thickness adapted to withstanding the maximum voltage likely to be applied to the power component during its operation; and delimiting in the wafer an area corresponding to at least one power component by an isolating wall formed by etching a trench through the epitaxial layer and diffusing from this trench a dopant of the first conductivity type of high doping level.
Abstract:
A symbol length is evaluated on the basis of receiving a first-symbol length, and a phase error with respect to detection of a length of the first symbol before receiving a length of a second symbol following the first symbol. The process includes evaluating at least two random phase errors on the basis of the phase error received. A first random phase error is dependent on a deterministic phase error with respect to a first state corresponding to an absence of a corrected first-symbol length. A second random phase error is dependent on a deterministic phase error with respect to a second state corresponding to the corrected first-symbol length. The process includes retaining as an evaluated symbol length the first-symbol length received if the absolute value of the first random phase error reduces a condition of passing through the first state. The second step also retains as an evaluated symbol length the corrected first-symbol length if the absolute value of the second random phase error reduces the condition of passing through the second state.
Abstract:
A switched mode power supply device comprising a power transistor periodically set to conduction and supplying a regulated voltage that comprises a ramp generation circuit controlled by a clock signal and periodically generating a ramp voltage. The device includes an amplifier error circuit between a reference voltage and said regulated output voltage and generates an error signal, and a comparator comparing the ramp voltage with said error voltage and providing an output signal for controlling said power circuit. The circuit is characterized in that it comprises a delay element delaying the setting to conduction of the power transistor so as to desynchronize the starting of the ramp and said setting to conduction.
Abstract:
An integrated temperature sensor delivers threshold detection signals when temperature thresholds have been exceeded. The temperature sensor includes a circuit for detecting a first temperature threshold having a first detection threshold, and for detecting a second temperature threshold having a second detection threshold. The circuit also detects a third temperature threshold between the first and second temperature thresholds, and detects a fourth temperature threshold between the first and second temperature thresholds. The third temperature threshold has a third detection threshold linked with the first detection threshold so that a deviation of the first detection threshold causes a corresponding deviation of the third detection threshold. Similarly, the fourth temperature has a fourth detection threshold linked with the second detection threshold so that a deviation of the second detection threshold causes a corresponding deviation of the fourth detection threshold. The third and fourth temperature thresholds define a temperature window to test the temperature sensor for detecting a deviation of the first and second detection thresholds.
Abstract:
Method of compressing a digital image signal in which a first quantization step set, which is unique for a given segment, is determined so that the number of bits needed to encode the quantized data corresponding to this segment is greater than a target value. This first quantization step set then being modified, as a priority, for the blocks of the segment for which the gain, in the course of this modification, on the reduction of the number of bits needed to encode the quantized data corresponding to the segment to which it belongs, is the highest. This modification is carried out, on as many blocks as is necessary for the number of bits of this segment to be less than or equal to the target value. Device to implement this method.
Abstract:
An amplifier including first, second, and third series-connected stages, the third stage including a MOS output transistor having its source or drain forming an output terminal of the amplifier, including means for detecting the transition from a first operating state of the output transistor in which the drain current varies little with the voltage between the drain and the source to a second state in which the drain current varies substantially proportionally to the voltage between the drain and the source; and means for, upon detection of such a transition, having the voltage gain of the amplifier and/or the product between the bandwidth of the amplifier and the voltage gain of the amplifier at the upper limit frequency of the bandwidth drop.
Abstract:
A system and method for detecting the nature of a video signal using a video synchronization circuit including a phase locked loop having a time constant is disclosed. The method includes calculating a horizontal phase difference between a predetermined first line of the video signal and a predetermined second line of the video signal, the predetermined first line and the predetermined second line bracketing a change of frame. If the horizontal phase difference is greater than a threshold, the video signal is deemed to be a video recorder signal. The method further includes adjusting the time constant of the phase locked loop of the video synchronization circuit according to the nature of the video signal, as determined in the calculating step.
Abstract:
A mirroring circuit operating at high frequencies is provided. The mirroring circuit includes a first branch having a first transistor in series with a first resistor, a second branch having a second transistor in series with a second resistor, and a servo circuit for controlling current flowing in the first branch and the second branch. The servo circuit includes a third transistor configured as a diode, a source of the third transistor coupled to a source of the first transistor, a fourth transistor configured as a shift lever, a source of the fourth transistor coupled to ground via a third resistor, a fifth transistor configured as a diode, a source of the fifth transistor coupled to a source of the second transistor, and a sixth transistor configured as a shift lever, a source of the sixth transistor coupled to ground via the third resistor.
Abstract:
A microprocessor includes internal registers, an arithmetic and logic unit, and reads a program memory and executes an instruction set stored therein. The instruction set includes at least one instruction for exchanging the contents of both memory locations. The microprocessor includes an additional internal register connected to an output of the arithmetic and logic unit, and transfers the contents of a first one of the memory locations to be exchanged into the additional register when executing the instruction set. The microprocessor further transfers the contents of a second one of the memory locations to be exchanged into the first memory location, and transfers the contents of the additional register into the first memory location.