Abstract:
The invention relates to a method of generating an ordered deposition geometry on a surface of a compound optical fibre, which comprises: (a) arranging a plurality of optical fibres and/or compound optical fibres in common orientation and close packed configuration to form a bundle; (b) drawing the bundle under suitable conditions to produce a compound optical fibre of desired diameter; (c) processing the compound optical fibre to produce a substantially planar surface ; (d) subjecting said surface to an etching agent to produce surface relief; (e) subjecting said surface with relief to metal coating. The invention also covers a compound optical fibre having an ordered deposition geometry on a substantially planar surface that is substantially transverse to compound optical fibre longitudinal axis, wherein the compound optical fibre comprises individual optical elements of less than about 1000nm in diameter.
Abstract:
A method is provided for monitoring and managing muscle activity and soft tissue loading. The method includes providing to a subject a plurality of sensors for measuring muscle activity and soft tissue loading levels; directing the subject to undertake a program of exercise; measuring muscle activity and soft tissue loading during the program of exercise; comparing the measured muscle activity and soft tissue loading levels against calibrated muscle activity and soft tissue loading levels for the subject; and alerting the subject if the comparison of measured muscle activity and soft tissue loading levels against calibrated muscle activity and soft tissue loading levels indicates that a desirable level of muscle activity and/or soft tissue loading is being exceeded.
Abstract:
The invention relates to materials that exhibit biocidal activity and in particular to surfaces that exhibit novel surface topography that is lethal to cells on contact. The invention also relates to devices comprising such surfaces, to methods of producing the surfaces and to methods of eliminating or reducing cellular survival wherein cells are exposed to the surfaces. In particular the invention relates to a synthetic biocidal surface comprising an array of nanospikes that are lethal to cells on said surface due to piercing of cell membranes by said nanospikes and to a method of producing a synthetic biocidal surface comprising an array of nanospikes that are lethal to cells on said surface due to piercing of cell membranes by said nanospikes, which comprises exposing a silicon comprising substrate surface to reactive-ion etching.