Abstract:
Provided are methods comprising the use of non-sugar organic compatible solutes for protection and preservation of the activity of biologically active molecules and conjugate labels. The methods are particularly adaptable for use in conjunction with immunoassays, such as for example, immunochromatographic test assays and may be incorporated into any test methodology wherein a dry test strip is used as a carrier for depositing, mobilizeable and/or immobilized biologically active molecules and/or conjugate labels.
Abstract:
A bent axis pump/motor includes a back plate positioned within a casing, and a check valve positioned in the back-plate, the check valve configured to control passage of fluid from within the casing to an interior of the back plate. A yoke, coupled to the back plate, includes trunnions, positioned within respective apertures in the casing, upon which the yoke rotates. Bearings, occupying less than the complete circumference of the respective trunnion, are positioned between each of the trunnions and respective inner walls of the apertures. Trunnion apertures, for passage of fluid, are positioned in a portion of the circumference not occupied by the respective bearing. A valve positioned within the casing selectively couples high- and low-pressure fluid to the trunnions. Fluid supply channels, formed integrally with the casing, transmit fluid from the valve to the trunnions via fluid apertures provided within the apertures in the casing.
Abstract:
A low emission, direct injection, compression ignition, internal combustion engine operates with reduced charge-air oxygen concentration levels to control localized peak combustion temperatures and reduce NOx formation. Low cetane fuel, below 43 cetane, and most preferably with a cetane rating below 30, is utilized with the combustion system to reduce smoke and PM formation simultaneously with the reduced NOx formation. In a preferred embodiment, FCC Naptha fuel, with a cetane rating below 30 and an end boiling point below 120 degrees Celsius, is used with the combustion system together with the reduced charge-air oxygen concentration levels to produce engine-out NOx emissions of 0.2 g/bhp-hr or lower, and PM emissions at 0.01 g/bhp-hr or lower, without the need for NOx (and potentially PM) aftertreatment. Potential commercial applications of the fuel and combustion system are discussed, including application to vehicle fleets, with novel methods of operating a vehicle fleet (and of providing fuel to such fleets) to meet motor vehicle emissions regulations at a reduced cost also being disclosed.
Abstract:
The invention is directed toward methods for operating a series hybrid vehicle in a manner that responds to the operator's demand for power output, while maximizing engine efficiency and minimizing disruptions in vehicle drivability. According to the present invention, when the driver of a series hybrid vehicle makes a demand for power output, whether the secondary power source(s) (12) is supplied with secondary energy stored in an energy storage device(s) (14), direct input energy generated by an engine(s) (16), or both, depends on the amount of available secondary energy stored in the vehicle's secondary storage device(s) alone, and in combination with vehicle speed. During the time that the engine is used to generate secondary energy, the power efficiency level at which the engine is operated also depends on the vehicle speed and the amount of available secondary energy stored in the vehicle's secondary storage device alone, and in combination with vehicle speed.
Abstract:
Two motors are arranged on opposing sides of a common shaft, drive plates of the pump/motors being rigidly coupled to each other, for example by being in hard contact with opposing sides of the shaft. By providing hard contact between the pump/motor drive plates and a common shaft, the drive plates and shaft act as a substantially solid element under compression, thereby substantially canceling axial loads generated by the pump/motors directly through the shaft. Residual axial loads are handled via bearings positioned on the shaft adjacent the drive plates in such a manner that the drive plates are in light contact only with the bearings. As a result, friction experienced by the bearings is substantially reduced as compared to conventional systems, thereby improving the efficiency of the system. To further reduce loads on the bearings, the pump/motors are arranged to ensure that they generate radial forces in a direction that is opposite to that of a separation force generated by a torque transferring device carried on the shaft and transmitted to the bearings. A common housing surrounding the two pump/motors, bearings and torque transferring device is divided into three regions, to segregate the bearings and torque transferring assembly from the pump/motors. In this manner, the regions containing the pump/motors are substantially filled with oil to, for example, fully lubricate the pump/motors, while the central region containing the gears and torque transferring device contains a significantly smaller volume of oil to simply splash lubricate the contents of the region, thereby reducing drag on the bearings. Control means are provided for selectively moving the two pump/motors substantially simultaneously to a selected displacement angle, using mechanical systems alone and in combination with hydraulic systems.
Abstract:
An internal combustion engine is adapted for operation with homogeneous combustion and compression ignition. The engine includes plural cylinders with the piston in each cylinder defining the main combustion chamber and connected to a crankshaft for reciprocating motion rotatably driving the crankshaft. An auxiliary combustion chamber and an inlet passage are formed in the engine head for each of the cylinders with a control valve for controlling communication between the main combustion chamber and the auxiliary combustion chamber and an inlet valve for controlling communication between the main combustion chamber and the inlet passage. The inlet valve is driven with rotation of the crankshaft, while the drive for the combustion control valve is independent of angular position of the crankshaft and has its own controller for timing its opening and closing to provide controlled homogeneous combustion.
Abstract:
A method of operation of an internal combustion engine to minimize NOx emission in the exhaust gas involving the detection of the load on the vehicle engine as either a low load or a high load. When a low load is detected, unthrottled air and a quantity of fuel providing for a lean combustion condition are mixed with the injection (4) of fuel adjacent top dead center during the compression stroke. When a high load condition is detected, throttled air and a quantity of fuel governed by the sensed oxygen content of the exhaust gas are mixed in an approximately stoichiometric ratio with the injection (4) at a much earlier time than the injection at low load, preferably during the intake stroke.
Abstract:
Fail-safe methods for utilizing an over-center pump/motor in a hydraulic hybrid vehicle are disclosed. A high-pressure fluid shutoff valve and an optional electrically or manually operated valve are additionally provided as means to ensure disconnection of the high pressure source in the event of a failure. Displacement stroke position and pressure differentials across the pump/motor are continually monitored. On detection of various modes of failure or irregularity in control of displacement, actions are taken including any of: the high pressure and low pressure accumulators are shut off automatically or manually, a check valve between the high and low pressure ports of the pump/motor is activated, and a small amount of pressurized fluid is released from the high pressure circuit to depressurize the captive fluid. Safe startup and shutdown procedures are also specified. The system provides for safe operation of a hydraulic hybrid vehicle that includes an engine pump and drive motor, at least one of which operates over-center. The system optionally provides a displacement control valve that is controlled by feedback from an actuator or displacement position sensor and that on loss of electric power to the displacement control valve will cause the controlled pump/motor to stroke to a zero displacement position.
Abstract:
A shut off valve is configured to shut off flow from the high pressure fluid line to the high pressure accumulator in a series hydraulic hybrid vehicle in order to quickly raise system pressure in the high pressure fluid line and enable additional torque output from the hydraulic motor for vehicle propulsion. A pressure relief valve is further provided to vent excess flow from the high pressure line to the high pressure accumulator as needed to avoid exceeding a maximum desired system pressure in the high pressure fluid line, thereby providing for safe and efficient hydrostatic operation in the vehicle.
Abstract:
A hydraulic manifold has features adapted to the needs of hybrid vehicle applications. In one embodiment, multifunction valves selectively regulate fluid flow among primary and auxiliary flow paths. A normally closed butterfly valve is biased by a relatively small secondary biasing force against rotation in first and second (opposite) directions, and by a relatively large principal biasing force against rotation in the first direction past a transitional angular position at which the principal biasing force takes effect. An actuator selectively controls the transitional angular position and the magnitude of the principal biasing force. In the first direction, flow must overcome only the secondary biasing force to pass the valve. In the second direction, any flow sufficient to overcome the secondary biasing force but not the principal biasing force will divide into a first flow passing the valve and a second flow induced to enter an auxiliary path upstream. Additional flow causing the principal biasing force to additionally be overcome will substantially pass the valve as part of the first flow. This and other embodiments provide a manifold that is controllable to allocate flow among primary and auxiliary paths while remaining responsive to sudden large changes in flow independently of immediate control response.