-
公开(公告)号:CN108876012B
公开(公告)日:2021-08-13
申请号:CN201810519625.7
申请日:2018-05-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种空间众包任务分配方法,属于互联网技术领域,本发明分别设计了用于计算任务处理优先级的TPC方法、用于选择工人的WFC方法以及用于任务地点选择的MLS方法,基于这三个方法提出了一种空间众包任务分配方法,目标是在满足各种约束的条件下,保证任务分配总数以及平台收益,并最大化任务分配的总收益。
-
公开(公告)号:CN113011093A
公开(公告)日:2021-06-22
申请号:CN202110277082.4
申请日:2021-03-15
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06N3/04 , G06N3/08 , G06F119/10
Abstract: 基于LCWaveGAN的船舶航行噪声仿真生成方法,本发明涉及船舶航行噪声仿真生成方法。本发明的目的是为了解决现有船舶航行水下辐射噪声信号准确率低,获得方式繁琐的问题。过程为:一、获取真实的船舶水下辐射噪声;二、得到连续谱;三、生成时域的连续谱噪声信号;四、生成仿真的船舶水下辐射噪声连续谱的时域信号;五、生成仿真的连续谱时域信号;六、提取调制参数;七、合成调制信号;八、提取真实的船舶水下辐射噪声的线谱;九、生成连续谱;十、通过调制信号和连续谱,叠加形成静止状态下的消声水池的目标仿真水下辐射噪声;十一、对水下辐射噪声进行运动修正,得到仿真船舶航行水下辐射噪声。本发明用于船舶航行数据生成领域。
-
公开(公告)号:CN112464673A
公开(公告)日:2021-03-09
申请号:CN202011431776.0
申请日:2020-12-09
Applicant: 哈尔滨工程大学
IPC: G06F40/30 , G06F40/216
Abstract: 融合义原信息的语言含义理解方法,属于语言信息处理技术领域。为了解决现有的语言建模方法存在复杂度较高的问题和不能兼顾效果的问题。本发明所述方法首先将语言以每个单词为单位,按照两条路径进行处理;左路径:单词编码器+RNN+单词解码器,左路径输出记为wl;右路径:义原编码器+RNN+义原解码器+词语解码器+sigmoid,右路径输出记为wr;然后将两个路径的输出进行融合。主要用于语言含义理解。
-
公开(公告)号:CN112417760A
公开(公告)日:2021-02-26
申请号:CN202011309350.8
申请日:2020-11-20
Applicant: 哈尔滨工程大学
Abstract: 基于竞争混合网络的舰船控制方法,本发明涉及舰船控制方法。本发明的目的是为了解决现有舰船在复杂环境中控制精度低的问题。过程为:一、建立个体智能体网络模型;二、建立优势混合网络模型;三、建立状态值混合网络模型;四、将个体观测历史输入到个体智能体网络模型中得到个体优势值函数以及个体状态值函数;将个体优势值函数传给优势混合网络模型,优势混合网络模型输出联合优势函数值;将个体状态值函数传给状态值混合网络模型,状态值混合网络模型输出联合状态值混合值;通过将联合优势函数值与联合状态值混合值相加得到联合动作值函数。本发明用于舰船控制领域。
-
公开(公告)号:CN111865932A
公开(公告)日:2020-10-30
申请号:CN202010611789.X
申请日:2020-06-30
Applicant: 哈尔滨工程大学
Abstract: 基于上下文关联注意力机制和简化LSTM网络的入侵检测方法,涉及网络安全技术领域,针对现有技术中入侵检测系统检测准确率低的问题,由于网络入侵流量数据具有一定的时序性和特征冗余性,因此本发明采用上下文关联注意力机制(CCAM,Contextual Connection Attention Mechanism)和简化LSTM网络(SLSTM,Simplify Long Short-Term Memory Network)的入侵检测方法,不仅能够过滤或弱化检测数据的冗杂信息,增加数据的上下文联系,还能提取关键数据信息,提高训练速度,增强入侵行为检测的准确率。
-
公开(公告)号:CN111626343A
公开(公告)日:2020-09-04
申请号:CN202010403756.6
申请日:2020-05-13
Applicant: 哈尔滨工程大学
IPC: G06K9/62 , G06F40/295
Abstract: 一种基于PGM与PSO聚类的船舰数据关系抽取方法,涉及数据处理技术领域,针对现有技术中在构建面向知识图谱过程中关系抽取存在的船舰数据抽取准确率低以及效率低的问题,本发明用一个概率图模型来计算相似度分数,依据这个分数对不同候选对象之间的相似程度进行划分,以使实体对更好的进行匹配,使用灵活的相似度准则来消除实体匹配的歧义,可以抽取更多关系。对现有的聚类算法中的适应度函数进行了优化,增加了两个准则,不易局部最优解的情况,使其能够加速收敛,从而获得最优解,在构建面向知识图谱过程中关系抽取准确率以及效率高。
-
公开(公告)号:CN106227911B
公开(公告)日:2019-08-06
申请号:CN201610487736.5
申请日:2016-06-28
Applicant: 哈尔滨工程大学
IPC: G06F17/50
Abstract: 本发明属于数据可视化分析领域,具体涉及一种基于电路图元素隐喻的主题演化可视化方法。包括:数据预处理,对文本数据进行预处理,进行分词、去停词操作,将文本集合处理成词库;采用LDA算法对文本集合进行处理,抽取主题,并记录与主题对应的词、文本以及时间和地点信息;以焊盘图标隐喻主题中的词,即词盘,词盘采用空心饼图形式表示,表示在此时间段内此词所处的地理分布比例等。该方法主要能够展示主题的内容、主题的强度随时间的变化及主题与主题间的演化关系以方便用户对主题的演化过程进行分析,还可展示各时段内同一主题强度的地理分布。
-
公开(公告)号:CN109284662A
公开(公告)日:2019-01-29
申请号:CN201810766508.0
申请日:2018-07-12
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种面向水下声音信号分类的迁移学习方法,涉及机器学习技术领域;本发明将数据集之间的分布和领域之间的域不变性结合;在类别分类器部分,使用MMD算法去匹配两数据集间的分布差异,并通过对内核的数量以及覆盖范围进行改变,最小化两数据集之间的分布差异;而在域分类器部分,则利用梯度反转去阻止域分类器在误差反向传播阶段的梯度下降,最大化域分类器的分类误差,使分类器具有领域不变性。一种面向水下声音信号分类的迁移学习方法,以动态的调整两种方法在模型进行迭代训练过程中的重要程度。通过实验证明,本发明提出的迁移学习方法要优于传统的分类方法以及现有的迁移学习方法DAN和DSN,并且分类越复杂,效果越明显。
-
公开(公告)号:CN109189862A
公开(公告)日:2019-01-11
申请号:CN201810766488.7
申请日:2018-07-12
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种面向科技情报分析的知识库构建方法,属于计算机知识库构建领域。提出了CWATT-BiLSTM-LSTMd模型用于实体抽取、RL-TreeLSTM模型用于实体关系抽取。实体抽取采用编码-解码模式,BiLSTM(双向长短期记忆网络)用于编码,LSTMd(长短期记忆网络)用于解码,并且对嵌入层和解码层进行了改进,然后使用此模型对科技情报领域的语料进行实体抽取。在实体抽取的基础之上,基于强化深度学习的思想提出RL-TreeLSTM模型对实体之间的关系进行抽取。RL-TreeLSTM模型分为两个部分:选择器和分类器。选择器选择有效的句子传入分类器,以降低远程监督方法带来的噪音;分类器对有效句子进行实体关系抽取,提高关系抽取的准确率。
-
公开(公告)号:CN107154258A
公开(公告)日:2017-09-12
申请号:CN201710229138.2
申请日:2017-04-10
Applicant: 哈尔滨工程大学
CPC classification number: G10L15/02 , G10L15/063 , G10L17/02 , G10L17/04 , G10L19/032 , G10L25/30
Abstract: 本发明提供的是一种基于负相关增量学习的声纹识别方法。一、对输入的语音信号进行预处理和特征提取;二、初始化网络集成,如果之前已存在网络集成,则复制当前所有网络;三、对网络集成进行训练;四、对网络集成中的每个网络进行结构调整;五、对当前网络进行筛选,选出其中最优的一部分网络;六、将当前得到的网络进行应用,如果有新数据到来,则从步骤一开始循环执行。本发明是以增量学习的方法对声纹识别进行研究,提高其在数据增量到来场景下的效率和识别准确率;基于负相关学习的增量学习算法能有效地解决增量问题。本发明分别从模型训练和模型选择两个方面进行改进,提出了一种新的算法以解决上述的问题,然后将其应用到增量学习中。
-
-
-
-
-
-
-
-
-