-
公开(公告)号:CN108319128B
公开(公告)日:2020-12-08
申请号:CN201810165857.7
申请日:2018-02-28
Applicant: 哈尔滨工程大学
IPC: G05B9/03
Abstract: 本发明公开了一种具有应急功能的波浪滑翔器容错控制系统及方法,属于波浪滑翔器控制领域,包括主控系统,应急控制系统,通信系统,传感器系统和舵机;主控系统包括主控计算机;应急控制系统包括监控计算机和第一继电器;通信系统包括铱星模块、铱星天线、GPS天线、AIS通信模块;主控系统与传感器系统间采用串口通信,主控系统与监控计算机间采用串口通信,监控计算机与主控系统通过第一继电器连接,应急控制系统与舵机间采用串口通信,应急控制系统与铱星模块采用串口通信,应急控制系统与AIS通信模块通过第二继电器连接;铱星模块具有GPS接口,铱星接口;铱星天线通过铱星接口与铱星模块连接;GPS天线通过GPS接口与铱星模块连接。本发明运行稳定性高,容错性强,具有自我修复能力,显著降低了波浪滑翔器失踪失联的风险。
-
公开(公告)号:CN106990787B
公开(公告)日:2020-09-25
申请号:CN201710344523.1
申请日:2017-05-16
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提供一种上下体艏向信息融合的波浪滑翔器航点跟踪方法。波浪滑翔器的舵机安装于潜体,舵机由主计算机控制,可直接控制潜体的转向,浮体的转向由潜体的拖曳力提供。浮体与潜体分别安装一个艏向传感器,测量浮体艏向ψF,潜体艏向ψG,并传至主计算机,主计算机完成波浪滑翔器浮体潜体的艏向信息融合,结合航行过程中的动态特征修正期望航向角,完成航点跟踪任务。本发明提供的方法能够有效避免波浪滑翔器刚柔多体系联结构特有的柔链缠绕现象,提高波浪滑翔器的航向控制性能,以及风、流等外界干扰力下的航点跟踪能力。
-
公开(公告)号:CN111547212A
公开(公告)日:2020-08-18
申请号:CN202010490271.5
申请日:2020-06-02
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种无动力式快速潜浮AUV的浮力控制方法,通过对AUV水平姿态变为竖直姿态的变化时间t的记录以及AUV竖直姿态下近似匀速运动速度的加权融合计算,对到达目标深度前由竖直姿态变为水平姿态的变化过程给出准确且充足的运动距离;在AUV竖直姿态变为水平姿态的下潜或上浮过程中以及AUV以水平姿态下潜或上浮过程中,采用深度与速度双闭环控制方法对浮力调节机构不断调节,并在此基础上利用非线性扩张状态观测器对下潜或上浮过程中受到的海洋环境干扰进行估计并补偿。本发明在不使用主推进器、辅助推进器和舵等动力推进装置的条件下更加准确地快速下潜或上浮到目标深度。
-
公开(公告)号:CN110937087A
公开(公告)日:2020-03-31
申请号:CN201911222643.X
申请日:2019-12-03
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种AUV水下布放与回收对接装置和对接方法,属于无缆水下机器人技术领域。由主体支撑结构,导引灯阵,夹紧装置和限位固定装置组成。导引灯阵由两个大灯和两个小灯组成,大灯安装在主体支撑结构两端,小灯安装在主体支撑结构中间部分。夹紧装置位于主体支撑结构两端的内部,夹紧臂与连杆铰接,连杆与摆动杆铰接,摆动杆固定在电机轴上。限位固定装置由半圆柱翻盖,电磁铁,传动齿轮和电机组成。半圆柱翻盖安装在主体支撑结构中部下方,电磁铁安装在半圆柱翻盖中部边上,半圆柱翻盖两端为不完全齿轮结构,与传动齿轮相啮合,传动齿轮固定在电机轴上。本发明体积小,结构简单,可实现对AUV的快速有效的布放与回收。
-
公开(公告)号:CN110717396A
公开(公告)日:2020-01-21
申请号:CN201910855232.8
申请日:2019-09-11
Applicant: 哈尔滨工程大学
IPC: G06K9/00
Abstract: 本发明提供的是一种UUV叉柱式回收中的目标识别方法。步骤一、通过UUV上的水下摄像机获取水下图像;步骤二、通过中值滤波、阈值分割进行图像预处理,获取含有L型光源阵列的水下图像;步骤三、UUV叉柱式回收过程中,通过亚像素轮廓的目标个数识别方法识别L型光源阵列中目标光源的个数;否则,调整UUV位置和艏向继续采集水下图像;步骤四、UUV叉柱式回收过程中,通过斜率和相对距离的目标识别方法识别L型光源阵列的目标光源。本发明实现了UUV回收过程中对L型光源阵列的目标识别,提高了UUV回收过程中目标识别的准确度,进而减少了UUV相对于L型光源阵列的定位误差。
-
公开(公告)号:CN106525042B
公开(公告)日:2019-10-18
申请号:CN201610854298.1
申请日:2016-09-27
Applicant: 哈尔滨工程大学
IPC: G01C21/20
Abstract: 本发明的目的在于提供一种基于蚁群与扩展卡尔曼滤波相结合的多AUV协同定位方法,首先建立AUV运动学模型,然后线性化AUV模型,采用改进的蚁群算法对Q矩阵R矩阵进行最优估计:先采用蚁群算法进行首次遍历,产生大量解;采用粒子群算法找到全局最优值;再次利用蚁群算法,将当前解集置为蚁群初始出发点,然后根据蚁群中蚂蚁获得的解的质量的优劣,选出部分最优秀的蚂蚁按其解的优劣程度加权平均释放信息素。最终,将求解出来的Q,R运用到EKF中,从而实现对从AUV的定位。本发明巧妙地将智能算法与EKF相结合,不仅解决了噪声矩阵的不确定、难选择的问题,而且提高了EKF的滤波精度,应用于多AUV的定位系统中,大大提高了对从AUV定位的精确度。
-
公开(公告)号:CN108284915B
公开(公告)日:2019-09-27
申请号:CN201810165106.5
申请日:2018-02-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了波浪滑翔器双体艏摇响应预测方法,属于波浪滑翔器控制领域,包含如下步骤:步骤(1):初始化状态信息;步骤(2):输入已知的舵角信息,在一个迭代步长内根据潜体艏摇响应方程计算潜体艏摇响应值步骤(3):根据当前浮体艏向与当前潜体艏向计算浮体等效舵角δF;步骤(4):输入浮体等效舵角,在一个迭代步长内根据浮体艏摇响应方程计算浮体艏摇响应值,浮体艏摇响应值包括浮体艏向角,浮体转艏角速度,浮体转艏角加速度;步骤(5):判断仿真是否结束,若仿真没有结束,则返回步骤(2);若仿真结束,则结束。本发明步骤简洁有效,模型参数具有较为清晰的物理意义而相对容易获取还能够作为运动控制方法研究的仿真平台。
-
公开(公告)号:CN109444911A
公开(公告)日:2019-03-08
申请号:CN201811217208.3
申请日:2018-10-18
Applicant: 哈尔滨工程大学
Abstract: 本发明属于智能无人智慧船舶领域,具体涉及一种单目相机和激光雷达信息融合的无人艇水面目标检测识别与定位方法。针对无人艇对水面目标检测识别及定位受距离、目标波动的影响,本发明融合激光雷达和相机对感知范围内的目标进行准确检测识别及定位。首先利用采集到的水面目标图像训练基于神经网络的目标检测识别模型;然后激光雷达使用条件移除滤波器和欧氏聚类得到水面目标在世界坐标系下的位置;最后,设计了相机图片信息和激光雷达点云信息融合方法,使其对不确定性因素具有较高的鲁棒性。本发明能够使无人艇具备对水面目标准确检测识别定位的能力,为无人艇的目标跟踪,路径规划和自主航行提供良好的环境感知,应用前景广阔。
-
公开(公告)号:CN105589464B
公开(公告)日:2019-02-26
申请号:CN201610182817.4
申请日:2016-03-28
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 一种基于速度障碍法的UUV动态避障方法,涉及一种UUV动态避障方法。解决了现有UUV的路径规划方法在动态环境中存在避开移动障碍物的准确性差的问题。本发明将障碍物的运动不确定性转化为位置不确定性;根据障碍物的运动不确定性,获得最小安全角α1和最大安全角α2;获得多障碍物对UUV造成的综合速度危险度,根据UUV动力学约束规律,确定UUV运动的速度空间,根据障碍物的位置不确定性和障碍物的最大作用范围,获得UUV与所有障碍物的最小碰撞时间;利用UUV的综合速度危险度和UUV与所有障碍物的最小碰撞时间,获得UUV的优化目标路径函数;利用速度障碍法寻找目标函数的最小值点,作为UUV运动的下一个航路点,实现对UUV运动路径的规划。本发明适用于UUV动态避障。
-
公开(公告)号:CN108809406A
公开(公告)日:2018-11-13
申请号:CN201810589262.4
申请日:2018-06-08
Applicant: 哈尔滨工程大学
CPC classification number: H04B7/1851 , H04B7/18513 , H04B7/18519 , H04L67/12
Abstract: 本发明属于无人船控制技术领域,公开了一种无人船的智能认知信息远程交互系统,解决了目前无人船与操作人员之间进行远程通信存在的数据通信量大、时效性差、运行范围受限、需频繁干预的问题,包括船载智能认知与通信系统,远程交互控制中心,通信卫星,第一卫星数据通信链路,第二卫星数据通信链路和微波或超短波数据通信链路;第一卫星数据通信链路连接通信卫星与船载智能认知与通信系统,第二卫星数据通信链路连接通信卫星与远程交互控制中心,微波或超短波数据通信链路连接船载智能认知与通信系统与远程交互控制中心。本发明保证无人船的监测和干预控制具有时效性,实现全球覆盖,具有较高的智能化水平,降低了操作人员对无人船干预的频率。
-
-
-
-
-
-
-
-
-