-
公开(公告)号:CN105868336B
公开(公告)日:2019-11-29
申请号:CN201610182802.8
申请日:2016-03-28
Applicant: 哈尔滨工程大学
IPC: G06F16/242 , G06F16/2453
Abstract: 路网中面向集合的空间关键词查询方法,属于空间关键词查询技术领域。本发明的提出是为了实现对于用户的提出的空间关键词查询能够快速返回多条最佳路线供用户选择。技术要点:本发明所提出的路网中面向集合受查询方向约束的空间关键词查询给出了两种情况,即面向无主关键词的查询和主关键词优先的查询。无主关键词的查询即从查询点出发按照道路网在可查询范围内扩展查询。主关键词优先的查询,首先在可查询范围内以一种迭代替换的方式进行扩展查询直到查询到主关键词对象,若还有关键词没有被已查询到的空间对象所覆盖,则以面向无主关键词的查询方式继续进行扩展查询。分别对以上两种查询进行了实验,证明了所提方法的有效性。
-
公开(公告)号:CN110378489A
公开(公告)日:2019-10-25
申请号:CN201910695772.4
申请日:2019-07-30
Applicant: 哈尔滨工程大学
Abstract: 基于实体超平面投影的知识表示学习模型,本发明涉及知识表示学习模型。本发明的目的是为了解决现有现有的知识表示学习模型大部分都只关注知识图谱的结构化信息,仅仅利用知识三元组来学习实体以及关系的表示,却忽略了实体的文本描述中可能蕴含的一些有用信息,导致处理任务时准确率低的问题。过程为:步骤一、将实体的描述文本处理成矩阵形式;步骤二、将步骤一得到的矩阵形式的文本输入到卷积神经网络中,得到实体描述文本的特征向量;步骤三、利用步骤二得到的特征向量建立EHP模型,得到实体以及关系的最终向量表示。本发明用于自然语言处理领域。
-
公开(公告)号:CN110147843A
公开(公告)日:2019-08-20
申请号:CN201910430437.1
申请日:2019-05-22
Applicant: 哈尔滨工程大学
IPC: G06K9/62
Abstract: 本发明提供基于度量学习的语音时序数据相似性度量方法,属于数据分类技术领域。本发明首先获取语音时序数据;结合马氏距离和斯皮尔曼线性相关性系数计算语音时序数据的局部距离,然后使用动态时间弯曲算法得到动态时间弯曲距离的表达式;再根据PGDM度量学习框架建立以马氏矩阵为参数的损失函数;求解损失函数计算出针对当前训练集样本的马氏矩阵;最后将步骤四中求得的马氏矩阵代入动态时间弯曲距离的表达式,得到每两个语音时序数据样本的相似性度量。本发明解决了现有语音时序数据相似性度量不准确的问题。本发明可用于语音时序数据的相似性度量。
-
公开(公告)号:CN108920503A
公开(公告)日:2018-11-30
申请号:CN201810519638.4
申请日:2018-05-28
Applicant: 哈尔滨工程大学
IPC: G06F17/30
Abstract: 本发明提供了一种基于社交网络信任度的微视频个性化推荐算法,属于计算机算法领域。步骤如下:1.利用全局信任度和局部信任的差值计算用户偏差度;2.在传统相似度的计算方法中加入置信度因素;3.利用信任对时间的依赖性,信任网络发生动态地演化;4.创建用户的相似网络和信任络组成的双网络时域演化模型;5.根据DNTDEM的建立,得到一个全新的用户信任网络;6.利用LDA模型对推荐内容进行补充;7.预测的用户应该与其的情感邻居相似,然后通过最小化误差平方值对其进行优化。本发明可以有效识别高质量的新形式的用户生成内容(UGC),并向适当的用户进行推荐;还可以减轻其他用户主观偏见对推荐内容的影响,从而更加客观的向对象用户提供更优质的推荐内容。
-
公开(公告)号:CN108875592A
公开(公告)日:2018-11-23
申请号:CN201810519139.5
申请日:2018-05-28
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于注意力模型的卷积神经网络优化方法。首先对水下目标的噪声数据进行分段,针对每段噪声数据提取其MFCC,其目的是将目标噪声数据变成定长的矢量化数据。然后,将得到的定长的矢量化数据按实验过程中水听器的排布位置以及其时序关系进行拼接,形成一个完整的时段水听阵特征,继而再将形成的水听阵特征转成对应的图片以作为输入数据集输入到训练网络中。本发明通过试验对模型在使用情况的结果分析以及对模型进行修改与优化,深度学习对水下目标识别识别率的得到10%‑15%的提升。
-
公开(公告)号:CN107194411A
公开(公告)日:2017-09-22
申请号:CN201710237933.6
申请日:2017-04-13
Applicant: 哈尔滨工程大学
IPC: G06K9/62
CPC classification number: G06K9/6257 , G06K9/6269
Abstract: 本发明提供的是一种改进的分层级联的支持向量机并行化方法。通过改进的Cascade SVM算法得到了优化:首先,改进算法中c的引入,用于在层级训练过程中,衡量每一层训练中得到的模型支持向量个数的变化情况。其次,通过调整模型训练过程中的合并策略和层次结构,每层训练得到的支持向量的合并方式由两两合并,优化调整为全部合并之后再进行平均切分,这样避免了两两进行合并方式中存在过滤非边界样本不足的缺点。本发明可以保证不失分类精度的前提下,同时借助当前主流的Spark并行框架,有效地缩短模型训练时间,提高模型的训练和分类效率。
-
公开(公告)号:CN107194404A
公开(公告)日:2017-09-22
申请号:CN201710237910.5
申请日:2017-04-13
Applicant: 哈尔滨工程大学
CPC classification number: G06K9/4628 , G06K9/6262 , G06N3/0454 , G06N3/084
Abstract: 本发明提供的是一种基于卷积神经网络的水下目标特征提取方法。1、将原始辐射噪声信号的采样序列,分成25个连续部分,每个部分再设置25个采样点;2、将第j段数据信号的采样样本做归一化和中心化处理;进行短时傅里叶变换得到LoFAR图;4、将向量赋值到已有3维张量中;5、将得到特征向量输入到全连接层进行分类并计算与标签数据的误差,检查损失误差是否低于误差阈值,若低于则停止网络训练,否则进入步骤6;6、使用梯度下降方法对网络从后向前逐层进行参数调整,并转入步骤2。本发明方法的识别率与传统卷积神经网络算法相比,对特征图层进行了空间信息多维度的加权操作,来弥补因全连接层的一维向量化所带来的空间信息丢失的缺陷。
-
公开(公告)号:CN106875281A
公开(公告)日:2017-06-20
申请号:CN201710144505.9
申请日:2017-03-13
Applicant: 哈尔滨工程大学
IPC: G06Q50/00
CPC classification number: G06Q50/01
Abstract: 本发明提供的是一种基于贪心子图的社会网络节点挖掘方法。首先依据节点度这个重要属性结合了局部拓扑结构的聚集系数估计出节点的影响潜力,根据影响潜力高低排序并加入种子节点候选集合,同时通过对网络的整体评判排序并选择出特异性阈值最高的节点加入种子节点候选集合。在完成候选集合的选择后,通过改进影响力的线性阈值模型表现为贪心子图策略对于集合中的节点进行真实的传播模拟,选取增量影响范围最大的节点加入到最终节点挖掘结果集合中,并且在每一步传播完成时动态的修正候选集合中的节点,重复候选集合修正过程和传播模拟过程直至达到预期规模的节点挖掘结果集合,最终得到理想的节点挖掘效果。
-
公开(公告)号:CN106227911A
公开(公告)日:2016-12-14
申请号:CN201610487736.5
申请日:2016-06-28
Applicant: 哈尔滨工程大学
IPC: G06F17/50
CPC classification number: G06F17/5081
Abstract: 本发明属于数据可视化分析领域,具体涉及一种基于电路图元素隐喻的主题演化可视化方法。包括:数据预处理,对文本数据进行预处理,进行分词、去停词操作,将文本集合处理成词库;采用LDA算法对文本集合进行处理,抽取主题,并记录与主题对应的词、文本以及时间和地点信息;以焊盘图标隐喻主题中的词,即词盘,词盘采用空心饼图形式表示,表示在此时间段内此词所处的地理分布比例等。该方法主要能够展示主题的内容、主题的强度随时间的变化及主题与主题间的演化关系以方便用户对主题的演化过程进行分析,还可展示各时段内同一主题强度的地理分布。
-
公开(公告)号:CN106067029A
公开(公告)日:2016-11-02
申请号:CN201610348890.4
申请日:2016-05-24
Applicant: 哈尔滨工程大学
IPC: G06K9/62
CPC classification number: G06K9/6223 , G06K9/6267
Abstract: 面向数据空间的实体分类方法,属于自然语言处理领域。演化环境下,存在无法通过假设实体为静止状态,而对实体进行分类的问题。一种面向数据空间的实体分类方法,首先,针对演化的数据空间实体,提出改进的、演化的K‑Means聚类框架,即定义基于轮廓值和KL‑散度的目标代价函数;其次,设计了一种新颖的数据空间实体相似性度量方法;然后,根据启发式规则,提出演化的K‑Means聚类算法。此外,进一步扩展本章提出的演化聚类框架,以处理簇数量随时间发生变化或者快照实体随时间加入或移除的情况。本发明不仅能高质量地捕获当前实体聚类结果,还能健壮地反映历史聚簇情况。
-
-
-
-
-
-
-
-
-