Abstract:
A co-generation system by a fuel cell of the present invention comprises: a fuel cell stack (100) which generates power and has cooling fluid supplied thereto through a supplying manifold (110) so as to absorb heat generated from a process of power generation and discharge the heat again through a discharging manifold (120); a circulating line (200) connecting the discharging manifold (120) and the supplying manifold (110); a thermoelectric module (300) which includes a high temperature part (310) installed on the circulating line (200) and absorbing heat of the cooling fluid circulating in the circulating line (200), and a low temperature part (320) coming in contact with fluid of the low temperature supplied from the outside or with the atmospheric air and which generates power by the difference of temperatures between the high temperature part (310) and the low temperature part (320); and a cooling module (400) installed between the thermoelectric module (300) and the supplying manifold (110) in the circulating line (200) and cooling the cooling fluid circulating in the circulating line (200). [Reference numerals] (AA) Flow of power; (BB) Flow of cooling fluid
Abstract:
The present invention relates to an apparatus for managing a fuel cell system for a vehicle. More particularly, an apparatus for managing a fuel cell system for a vehicle of the present invention provides an apparatus for managing a fuel cell system for a vehicle capable of optimally maintaining a driving method based on product information and environment information. According to the embodiment of the present invention, the apparatus for managing a fuel cell system for a vehicle includes a connection part (100); a collection part (200) for receiving data; and a control part (400) for controlling a fuel cell system (400) for a vehicle. [Reference numerals] (100) Connection part; (200) Collection part; (300) Calculation part; (40) Fuel cell system for a vehicle; (400) Control part
Abstract:
PURPOSE: A managing method of operating costs of a stationary fuel cell system is provided to improve the efficiency of a fuel battery module by quickly coping with information about environment, thereby providing optimum operation condition. CONSTITUTION: A managing method of operating costs of a stationary fuel cell system comprises a step of receiving product information by a receiving part and receiving environment information by a calculation part (S10); a step of determining the control method of the stationary fuel cell system in order to reduce operation costs by calculating the operation method according to the purpose of operation based on the received product information and environment information (S20); and a step of controlling the stationary fuel cell system according to the determined control method (S30). [Reference numerals] (AA) Start; (BB) End; (S10) Input information; (S20) Determine control method; (S30) Control
Abstract:
PURPOSE: A production method of a sulfonated polyarylene ether sulfone copolymer is provided to produce a polymer with excellent physical property under a single polymerization temperature without using an azeotrope solvent. CONSTITUTION: A production method of a sulfonated polyarylene ether sulfone copolymer for a fuel cell comprises the following steps: mixing potassium carbonate with a monomer selected from 4,4'-dihydroxydiphenyl, bis(4-chlorophenyl)sulfone, bis(4-fluorophenyl)sulfone, or 3,3'-disulfonated-4,4'-chlorodiphenyl sulfone; dissolving the mixture in N,N-dimethylacetamide which is a reaction solvent; conducting a reaction at 160-190°C for 16-20 hours; and precipitating, washing, filtering, and drying the reaction result. [Reference numerals] (AA) Comparative example; (BB) Example
Abstract:
PURPOSE: A management apparatus of a stationary fuel cell system is provided to improve the effectiveness of a module by rapidly responding to the environmental information and product information. CONSTITUTION: A connection part is connected to a control unit of a fuel cell system. A collection unit (200) receives data from the system. An operation unit (300) determines the control method of the system. A control unit (400) is connected to the operation unit and the connection unit. The control unit controls the system according to said control method. [Reference numerals] (100) Connection unit; (200) Collection unit; (300) Operation unit; (400) Control unit; (70) Stationary fuel cell system
Abstract:
본 발명은 두 전극촉매층 사이에 구비된 고분자 전해질 막을 포함하는 막전극 접합체의 양측면에 기체확산층이 적층된 적층체를 열간압착하는 과정 중, 수증기를 공급하여 막전극 접합체와 기체확산층의 정렬 및 고정화와 동시에 사전활성화 하는 고분자 전해질 연료전지 사전활성화 장치에 관한 것이다. 이를 위해, 본 발명은 상기 적층체를 사이에 두고 서로 대향되는 내측면에 수증기를 공급하는 유로가 형성되되, 전기적 신호에 의해 발열하는 저항체를 포함하고, 상기 적층체를 열간압착하는 제 1판 및 제 2판; 상기 제 1판 또는 제 2판과 연결되어 제 1판 또는 제 2판에 압력을 인가하는 가압부; 상기 저항체와 각각 연결되어 상기 제 1판 및 제 2판의 온도를 조절하는 온도조절부; 및 상기 제 1판 및 제 2판의 유로와 각각 연결되어 수증기를 공급하는 수증기 공급부;를 포함하여 구성되는 것을 특징으로 하는 고분자 전해질 연료전지 사전활성화 장치를 제공한다. 본 발명의 고분자 전해질 연료전지의 사전활성화 장치는 상기 적층체에 수증기를 공급하면서 열간압착하여 상기 막전극 접합체 내에 포함된 고분자 전해질 막 및 전해질을 수화하여 수소이온의 이동도를 증가시키는 사전활성화 된 고분자 전해질 연료전지 막전극 접합체와 기체확산층의 일체물을 제조하는 장점이 있다.
Abstract:
PURPOSE: A device for testing performance of plural fuel cells is provided to increase measurement reliability by accurately controlling moisture of gas without separate control apparatus. CONSTITUTION: A device for testing performance(1000) of fuel cell comprises: a performance evaluation part(900) comprising a body(910) equipped with a plurality of fuel cells(1), a cooling part(920), and a heating part(930) and measuring the performance of fuel cell; an air distributor(230) in which a plurality of first connection parts(233) connected to a first tubular distribution pipe(231), an air inflow part(232), and a supply channel(21-1) of a separator(21) is formed; and a fuel distributor(620) in which a plurality of second connection parts(623) connected to a second tubular distribution pipe(621), a fuel inflow part(622), and a supply channel of a separator is formed.
Abstract:
본 발명은 두 전극촉매층 사이에 구비된 고분자 전해질 막을 포함하는 막전극 접합체의 양측면에 기체확산층이 적층된 적층체를 열간압착하는 과정 중, 수증기를 공급하여 막전극 접합체와 기체확산층의 정렬 및 고정화와 동시에 사전활성화 하는 고분자 전해질 연료전지 사전활성화 장치에 관한 것이다. 이를 위해, 본 발명은 상기 적층체를 사이에 두고 서로 대향되는 내측면에 수증기를 공급하는 유로가 형성되되, 전기적 신호에 의해 발열하는 저항체를 포함하고, 상기 적층체를 열간압착하는 제 1판 및 제 2판; 상기 제 1판 또는 제 2판과 연결되어 제 1판 또는 제 2판에 압력을 인가하는 가압부; 상기 저항체와 각각 연결되어 상기 제 1판 및 제 2판의 온도를 조절하는 온도조절부; 및 상기 제 1판 및 제 2판의 유로와 각각 연결되어 수증기를 공급하는 수증기 공급부;를 포함하여 구성되는 것을 특징으로 하는 고분자 전해질 연료전지 사전활성화 장치를 제공한다. 본 발명의 고분자 전해질 연료전지의 사전활성화 장치는 상기 적층체에 수증기를 공급하면서 열간압착하여 상기 막전극 접합체 내에 포함된 고분자 전해질 막 및 전해질을 수화하여 수소이온의 이동도를 증가시키는 사전활성화 된 고분자 전해질 연료전지 막전극 접합체와 기체확산층의 일체물을 제조하는 장점이 있다.
Abstract:
PURPOSE: A method for preparing a composite membrane crosslinked with anhydrous liquid monomer acrylamide containing sulfonic acids is provided to obtain a polymer electrolyte composite membrane with excellent hydrogen ion conductivity and mechanical property. CONSTITUTION: A method for preparing a composite membrane crosslinked with anhydrous liquid monomer acrylamide containing sulfonic acids comprises the steps of: impregnating a porous polymer support pre-processed by surfactants to become hydrophilic in a mixed solution containing sulfonic acid-containing anhydrous liquid monomer and bisacrylamide-based cross-linking agent; and photocrosslinking the porous polymer support by low ultraviolet energy irradiation of 150 mJ/cm^2 or less.
Abstract translation:目的:提供一种制备与含有磺酸的无水液体单体丙烯酰胺交联的复合膜的方法,以获得具有优异氢离子传导性和机械性能的聚合物电解质复合膜。 构成:制备用含磺酸的无水液体单体丙烯酰胺交联的复合膜的方法包括以下步骤:将含有含磺酸的无水液体单体和双丙烯酰胺的混合溶液中的表面活性剂预处理的多孔聚合物载体浸渍成亲水性 的交联剂; 并通过150mJ / cm 2以下的低紫外线能量照射使多孔聚合物载体光致交联。
Abstract:
PURPOSE: A water flooding prevention system for a fuel cell is provided to easily discharge condensed water to the outside by rotating the system when a fuel cell stack is formed in a circular flow path form, and vibrating the system when the fuel cell stack is formed in a plane flow path form. CONSTITUTION: A water flooding prevention system for a fuel cell comprises: a fuel cell(21) which generates electricity by allowing high pressure hydrogen to be supplied to a hydrogen tank(11); an on/off valve(22) for discharging the water inside the fuel cell; a flow rate controller(12) for supplying the amount of hydrogen provided from the hydrogen tank by a control signal transmitted from a fuel cell controller(31); a voltage measuring unit(23) for transmitting the voltage detection signal to the fuel cell controller; a water flooding prevention driving unit(41) operated by the control signal transmitted from the fuel cell controller; and the fuel cell controller.