Abstract:
PURPOSE: A filter reaction apparatus, and a production method of the carbon nanotubes and the hydrogen gas from methane using thereof are provided to reduce the heat energy consumption for producing hydrogen. CONSTITUTION: A filter reaction apparatus producing carbon nanotubes and hydrogen gas comprises the following: a hopper unit(21) formed on the lower side of the cylinder type apparatus; a heating unit(22) applying the heat to the inside of the apparatus; a partition wall(23) dividing the internal space; a reaction chamber(20) filtering gas with a filter(24); a storage chamber(30) storing solid particles from inserted from the reaction chamber; the filter supplying methane gas to the reaction chamber; and a catalyst/nano particle generator(50).
Abstract:
PURPOSE: A catalyst/adsorption powder rotational harmful gas removal filter reactor is provided to reduce the facility cost by using a catalyst and adsorption powder without replacing. CONSTITUTION: A catalyst/adsorption powder rotational harmful gas removal filter reactor comprises the following: a partition wall(21) dividing the internal space; a polluted bas insertion pipe(22) connected to the lower side of the internal space; a clean gas discharging pipe(23) connected to the upper side of the internal space; and a reaction chamber(20) formed with plural rod filter(24) located on the lower side of the partition wall.
Abstract:
본 발명은 공기극의 재료로써 LSCF를 적용하고 LSCF 공기극과 YSZ 전해질 사이에 CGO코팅층이 형성된 고체산화물 연료전지에 관한 것으로, 더 자세하게는 상기 YSZ층 및 CGO층은 진공슬러리 코팅법을 이용하여 형성되고, 1350℃에서 공소결 됨으로써 더욱 치밀한 코팅막을 형성하는데 그 기술적 특징이 있다. 본 발명의 CGO코팅층을 갖는 고체산화물 연료전지는 YSZ층과 반응하지 않고 LSCF 전극과 YSZ 전해질의 반응을 효과적으로 억제하여 고체산화물 연료전지의 작동온도 800℃에서 단위 전지의 최대전력은 공소결 온도 1350℃일때 1040mW/cm 2 이고 0.7V에서의 전력은 960mW/cm 2 으로 고체산화물 연료전지의 우수한 성능을 얻을 수 있는 장점이 있다. 고체산화물 연료전지, CGO코팅, 진공슬러리 코팅, 공소결
Abstract:
A method for simultaneous preparation of nanosized LSM-YSZ mixture for a solid oxide fuel cell is provided to improve the quality of a cathode by virtue of well dispersion of nanoparticles, to facilitate gas diffusion through the porous structure of the particles, and to improve the cost efficiency. A method for simultaneous preparation of nanosized LSM-YSZ mixture for a solid oxide fuel cell comprises the steps of: determining stoichiometric amount of La(NO3)3.6H2O, Sr(NO3)2, Mn(NO3)2.4H2O, Y(NO3)3.6H2O and Zr(NO3)2.5H2O so as to satisfy the formula of [0.765La(NO3)36H2O + 0.135Sr(NO3)2 + 1 Mn(NO3)24H2O + 2.3767C2H5NO2 -> (La0.85Sr0.15)0.9MnO3 + 4.753CO2 + 14.532H2O + 3.471N2; and 0.92ZrO(NO3)36H2O + 0.16Y(NO3)36H2O + 0.089C2H5NO2 ->(ZrO2)0.92(Y2O3)0.08 + 0.178CO2 + 6.702H2O + 1.204N2], and dissolving the materials into distilled water to provide a parent solution; dissolving glycine into the parent solution in a stoichiometric amount determined to satisfy the above formula; heating the glycine-containing parent solution to produce a powder mixture by self-ignition; and calcining the mixture at 650-1200 deg.C.