Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate core layer is preferably formed from a thermoplastic composition such as an ethylene acid copolymer ionomer resin; and the outer core layer is preferably formed from a thermoset composition such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.
Abstract:
Golf ball multi-layered core sub-assemblies and the resulting golf balls are provided. The core structure includes a foam inner core (center); and intermediate and outer core layers. Foamed polyurethane is preferably used to make the inner core. The intermediate and outer core layers are preferably made from non-foamed thermoplastic compositions such as ethylene acid copolymer ionomer. In an alternative version, the intermediate core layer may be made of a thermoset rubber such as polybutadiene. The core layers have different hardness and specific gravity levels. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate core layer is preferably formed from a thermoplastic composition such as an ethylene acid copolymer ionomer resin; and the outer core layer is preferably formed from a thermoset composition such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. In one preferred embodiment, the inner core has a positive hardness gradient, the intermediate core has a positive hardness gradient, and the outer core has a zero or negative hardness gradient. The core structure and resulting ball have relatively good resiliency.
Abstract:
A golf ball comprising: a core; a casing layer surrounding the core; and a cover layer surrounding the casing layer and being formed from a cover composition that is produced by a reaction of a prepolymer and a chain extender, wherein the prepolymer is formed from the reaction product of: (i) an isocyanate comprising an allophanate (“ICA”) and having an average NCO functionality in the range of 1.9 to 2.8 and (ii) a polyol-containing component or an amine-containing component or a blend thereof; and wherein the chain-extender is selected from the group consisting of amine-terminated chain-extenders, hydroxyl-terminated chain-extenders, and mixtures thereof. The ICA may comprise a reaction product of hexamethylene diisocyanate (HDI), at least one monoalcohol, and a bismuth-containing catalyst. The ICA may have an average equivalent weight of from about 200 to about 350; and the prepolymer may have an average equivalent weight of from about 420 to about 840. The cover has a thickness of at least about 0.010 in. and a flexural modulus of about 10,000 psi or greater.
Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate and outer core layers are preferably formed from non-foamed thermoset compositions such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate and outer core layers are preferably formed from non-foamed thermoset compositions such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.
Abstract:
A golf ball is formed including a core and a cover. The cover includes a thermoplastic inner cover layer and having a hardness between 55 and 60 Shore D, an outer cover layer having a hardness between 55 and 60 Shore D, and a non-ionomeric thermosetting polyurethane or polyurea intermediate cover layer disposed between the inner and outer cover layers. The intermediate cover layer has a hardness greater than the inner cover layer hardness and the outer cover layer hardness. The inner cover is formed from a partially- or fully-neutralized ionomer and the outer cover layer is formed from a polyurethane, a polyurea, or a urethane-urea blend.
Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate and outer core layers are preferably formed from non-foamed thermoset compositions such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate core layer is preferably formed from a thermoplastic composition such as an ethylene acid copolymer ionomer resin; and the outer core layer is preferably formed from a thermoset composition such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.
Abstract:
A method for manipulating a cure profile of an elastomer is disclosed. The method may include providing a formulation comprising an isocyanate prepolymer, a curative, a first catalyst, and a second catalyst. The method may further include curing the formulation by initiating a front-end cure reaction between the isocyanate prepolymer and the curative with the first catalyst. The method may further include decreasing a rate of a back-end cure reaction between the isocyanate prepolymer and the curative using the second catalyst, wherein the second catalyst does not impact the front-end cure reaction.