Abstract:
Propylene polymer compositions comprising: A) from 70 wt% to 95 wt%, of a random copolymer of propylene with ethylene, containing from 3.5 wt% to 8.5 wt%, of ethylene derived units, having a content of fraction soluble in xylene at 25°C comprised between 7.1 wt% and 15.2 wt% and having a melting point higher than 142.0°C; B) from 5 wt% to 35 wt%, of a copolymer of propylene with ethylene, containing from 8.5 wt% to 17.0 wt % of ethylene derived units; the sum A+B being 100; wherein the melt flow rate ,MFR (ISO 1133 (230° C, 2.16 kg).) from 0.6 g/10 min to 20.2 g/10 min;
Abstract:
A polyolefin composition comprising: A) from 19 wt% to 50 wt% of a propylene ethylene copolymer having an ethylene derived units content ranging from 1.5 wt% to 6.0 wt% B) from 50 wt% to 81 wt% of a propylene ethylene 1-butene terpolymer having an ethylene derived units content ranging from 1.5 wt% and 6.0 wt% and 1-butene derived units content of between 4.8 wt% and 12.4 wt%; the sum of the amount of component A) and B) being 100; the composition being characterized by the following features: - molecular weight distribution (MWD), expressed in terms of Mw/Mn, greater than 4.0; - the creep and recovery curve measured on the polymer fuse at 200°C measured accordingto the procedure reported in the characterizing section shows a maximum value between 600 and 200 seconds lower than 53x10-4 1/Pa.
Abstract:
A process for the preparation of propylene polymer compositions carried out in the presence of a catalyst system comprising (a) a solid catalyst component having average particle size ranging from 15 to 80 μm comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 50 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers, (b) an aluminum alkyl and optionally (c) an external electron donor compound, and comprising the following steps: (i) contacting the catalyst components (a), (b) and optionally (c); (ii) pre-polymerizing up to forming amounts of polymer from about 0.1 up to about 1000 g per gram of solid catalyst component (a); (iii) polymerizing propylene producing a propylene (co)polymer being for at least 85% by weight of insoluble in xylene at 25° C. and (iv) in a successive step, carried out in gas-phase, polymerizing mixtures of ethylene with α-olefins CH2═CHR in which R is a hydrocarbon radical having 1-10 carbon atoms, to produce the said ethylene copolymer.
Abstract:
Propylene polymer compositions comprising: A) from 70 wt% to 95 wt%, of a random copolymer of propylene with ethylene, containing from 3.5 wt% to 6.5 wt% of ethylene derived units, having a content of fraction insoluble in xylene at 25°C of not less than 93wt%; B) from 5 wt% to 35 wt%, of a copolymer of propylene with ethylene, containing from 8.5 wt% to 17.0 wt % of ethylene derived units; the sum A+B being 100; wherein the melt flow rate ,MFR (ISO 1133 (230° C, 2.16 kg) ranges from 0.6 g/10 min to 20.2 g/10 min.