Abstract:
Methods and systems for transmitting uplink control information and feed back are disclosed for carrier aggregation systems. A user equipment device may be configured to transmit uplink control information and other feedback for several downlink component carriers using one or more uplink component carriers. The user equipment device may be configured to transmit such data using a physical uplink control channel rather than a physical uplink shared channel. The user equipment device may be configured to determine the uplink control information and feedback data that is to be transmitted, the physical uplink control channel resources to be used to transmit the uplink control information and feedback data, and how the uplink control information and feedback data may be transmitted over the physical uplink control channel.
Abstract:
A method for reporting power headroom is disclosed. Power headroom may be reported across all carriers (wideband), for a specific carrier, or for a carrier group. The formula used to calculate the power headroom depends on whether the carrier (or a carrier in the carrier group) has a valid uplink grant. If the carrier or carrier group does not have a valid uplink grant, the power headroom may be calculated based on a reference grant. The power headroom is calculated by a wireless transmit/receive unit and is reported to an eNodeB.
Abstract:
Methods, systems, and apparatus for supporting uplink Transmission Time Interval (TTI) bundling in Long Term Evolution (LTE) are provided. Methods, systems, and apparatus for signaling, activation/deactivation, and wireless transmit/receive unit (WTRU) behavior are also provided.
Abstract:
Methods for signaling multi-user multiple-input multiple output (MU-MIMO) parameters for Evolved-UTRA (E-UTRA) are disclosed. Example signaling format methods are presented that allow use of distributed virtual resource blocks (DVRB) or support of four wireless transmit/receive units (WTRUs) but maintaining a predetermined signal format size. A signaling format is also presented that signals transmission precoding matrix indexes used by all co-scheduled WTRUs.
Abstract:
Methods of mapping, indicating, encoding and transmitting uplink (UL) grants and downlink (DL) assignments for wireless communications for carrier aggregation are disclosed. Methods to encode and transmit DL assignments and UL grants and map and indicate the DL assignments to DL component carriers and UL grants to UL component carriers are described. Methods include specifying the mapping rules for DL component carriers that transmit DL assignment and DL component carriers that receive physical downlink shared channel (PDSCH), and mapping rules for DL component carriers that transmit UL grants and UL component carriers that transit physical uplink shared channel (PUSCH) when using separate coding/separate transmission schemes.
Abstract:
Methods and apparatus for preventing physical hybrid automatic repeat request (HARQ) indicator channel (PHICH) ambiguities or collisions, for example, in a multi-carrier system or when transmitting multiple streams over multiple antennas, are described. Methods may include dividing resources or groups among multiple component carriers (CCs), using and assigning unused or vacant resources to CCs, forcing usage of adaptive HARQ processes in specified scenarios, setting a value for the cyclic shift of the corresponding uplink demodulation reference signals (DMRS) to a previous value for semi-persistent scheduling, and assigning a different first resource block for semi-persistent scheduling uplink resources and random access response grants for multiple CCs.
Abstract:
A method for reporting power headroom is disclosed. Power headroom may be reported across all carriers (wideband), for a specific carrier, or for a carrier group. The formula used to calculate the power headroom depends on whether the carrier (or a carrier in the carrier group) has a valid uplink grant. If the carrier or carrier group does not have a valid uplink grant, the power headroom may be calculated based on a reference grant. The power headroom is calculated by a wireless transmit/receive unit and is reported to an eNodeB.
Abstract:
Methods, devices, and systems for resource allocation are disclosed herein. Specifically, a wireless transmit receive unit (WTRU) may measure a reference signal received power (RSRP) level and a received signal strength indicator (RSSI) value of one or more resources in each of a plurality of patterns. The WTRU may exclude, from the selection, each pattern for which at least one resource in the pattern is reserved by another WTRU and has an RSRP greater than a threshold. On a condition that at least one of the plurality of patterns is not excluded, the WTRU may select a pattern with a lowest pattern RSSI value and a one or more resources satisfying a quality of service (QoS) requirement of data of the WTRU. The WTRU may then transmit the data of the WTRU using the selected pattern.
Abstract:
A WTRU may include a memory and a processor. The processor may be configured to receive beam grouping information from a gNB or transmission and reception point (TRP). The beam grouping information may indicate a group of beams that the WTRU may report using group-based reporting. The group-based reporting may be a reduced level of reporting compared to a beam-based reporting. The group-based report may include measurement information for a representative beam. The representative beam may be one of the beams in the group or represents an average of the beams in the group. Alternatively, the representative beam may be a beam that has a maximum measurement value compared to other beams in the group. The group-based report may include a reference signal received power (RSRP) for the representative beam and a differential RSRP for each additional beamin the beam group.
Abstract:
Methods, devices, and systems for resource allocation are disclosed herein. Specifically, a wireless transmit receive unit (WTRU) may measure a reference signal received power (RSRP) level and a received signal strength indicator (RSSI) value of one or more resources in each of a plurality of patterns. The WTRU may exclude, from the selection, each pattern for which at least one resource in the pattern is reserved by another WTRU and has an RSRP greater than a threshold. On a condition that at least one of the plurality of patterns is not excluded, the WTRU may select a pattern with a lowest pattern RSSI value and a one or more resources satisfying a quality of service (QoS) requirement of data of the WTRU. The WTRU may then transmit the data of the WTRU using the selected pattern.