Abstract:
A radio communication terminal that increases the ACK/NACK resource utilization efficiency while preventing ACK/NACK collision, and that causes no unnecessary reduction of the PUSCH band in a system that transmits E-PDCCH control information. The radio communication terminal adopts a configuration including a receiving section that receives a control signal including an ACK/NACK index via an enhanced physical downlink control channel (E-PDCCH) transmitted using one configuration from among one or a plurality of configuration candidates, a control section that selects a resource to be used for an ACK/NACK signal of downlink data from among specified resources specified beforehand based on E-PDCCH configuration information used for transmission or reception of the E-PDCCH and the ACK/NACK index, and a transmitting section that transmits the ACK/NACK signal using the selected specified resource.
Abstract:
The invention provides a base station that does not cause the number of blind decodings to be increased and further can prevent the flexibility of resource allocation from degrading. A search space setting unit (103) sets search spaces each of which is constituted by one or more control channel elements (CCEs) and each of which is to be decoded in the terminals and each of which is defined by a plurality of to-be-decoded candidates. An allocating unit (108) places, in one of the plurality of to-be-decoded candidates included in the search space, a control channel. The number of connections of CCEs constituting the to-be-decoded candidate is associated with the number of to-be-decoded candidates. The search space setting unit (103) causes, in accordance with the control channel to be transmitted, the association of the number of connections of CCEs constituting the to-be-decoded candidate with the number of to-be-decoded candidates to differ.
Abstract:
Disclosed is a transmission apparatus capable of properly performing cross carrier scheduling in ePDCCHs. In this apparatus, when communication is performed using a plurality of component carriers (CCs), configuration section 102 configures a first search space as a candidate to which control information for a first CC is assigned and a second search space as a candidate to which control information for a second CC other than the first CC among the plurality of CCs is assigned, within a same allocation unit group among a plurality of allocation unit groups included in a data-assignable region within the first CC, and transmission section 106 transmits control information mapped to the first search space and control information mapped to the second search space.
Abstract:
The present invention provides a base station whereby efficient resource allocation for data signals is realized. In a base station (100) where a downlink control signal directed to a relay station is mapped onto an allocation area (R-PDCCH allocation area candidate) comprising M (where M is a natural number of 2 or greater) resource blocks, an allocation area candidate determination section (101) distributes the M resource blocks among N (where N is a natural number less than M) allocation area groups, and determines N resource block groups for the placement of the allocation area groups; and a control signal allocation section (102) maps the downlink control signal directed to the relay station onto the M resource blocks that are specified on the basis of the determined N resource block groups and the number of resource blocks constituting each of the allocation area groups.
Abstract:
There are provided a communication device, a base station, a communication system, and a communication method that make it possible to yield a diversity effect by cooperative relay without involvement of disproportionateness in data received by an eNB even when one of parties has unsuccessfully exchanged data. After received an ACK signal from a repeater 1, a repeater 2 which has transmitted a NACK signal in procedure 7 transmits data S2 to the eNB by use of its own resource, thereby making its own resource available for the repeater 1 (the repeater 2 does not use its own resource, and the repeater 1 uses the resource of the repeater 2). In procedures 8, the repeater 1 has received the NACK signal from the repeater 2 and subsequently transmits data S1 to the eNB by use of its own resource. Subsequently, the repeater 1 which has received the NACK signal in procedure 9 determines that the resource of the repeater 2 is available and transmits data P1 to the eNB by use of the resource of the repeater 2. In procedure 10, the repeater 1 transmits previously-generated data P2 to the eNB by use of its own resource.
Abstract:
To improve the channel estimation accuracy of "DL grant" that instructs data allocation of a downlink of R-PDCCH. A wireless communication apparatus according to an aspect of the invention includes a receiver that is configured to receive a control signal, and a blind decoder that is configured to perform a blind decoding of a plurality of adjacent physical resource blocks (PRBs) in which the same precoding is used in a unit of an RB group (RBG) that is composed of the plurality of PRBs, and to detect a resource area to which a control signal for the wireless communication apparatus that is included in the control signal is allocated.
Abstract:
The present invention relates to a method for configuring a common search space in an Enhanced Physical Downlink Control Channel for at least a first User Equipment and a second User Equipment, by means of a configurable Radio Network Temporary Identifier. The invention further relates to the corresponding transmitter and received implementing the method.