Abstract:
Certain aspects of the present disclosure relate to a technique for signaling rank and precoding indications in uplink and downlink MIMO operations. Communicating signaling for uplink transmissions comprises generating an unprecoded reference signal (RS); including rank indication (RI) in a channel transmission; and transmitting the unprecoded RS and the channel transmission to an access terminal.
Abstract:
Certain aspects of the present disclosure relate to a technique for signaling rank and precoding indications in uplink and downlink MIMO operations using codebook and non-codebook based precoding.
Abstract:
Wireless uplink communication is disclosed which includes dividing information bits into first and second sets of information bits. The first set of information bits is encoded into a first set of coded bits, while the second set of information bits is encoded into a second set of coded bits. The first and second sets of coded bits are rate matched into a defined number of bits generating first and second sets of rate-matched coded bits. The first and second sets of rate-matched coded bits are interleaved using various interleaving methods to generate an interleaved set of coded bits.
Abstract:
User equipment (UE) associated with synchronous networks operate in a synchronous mode while UEs associated with asynchronous networks operate in an asynchronous mode. When operating in a synchronous mode, a UE can significantly improve performance of synchronization signal detection, data decoding, and tracking loop management by using the interference cancellation (IC) techniques that are not available in an asynchronous mode of operation. Obtaining synchronization indicators and determining the synchronization status of the current network by UE is disclosed. The determination may be based on the synchronization indicator, whether detected through signal detection, signal measurements, signal analysis, or the like.
Abstract:
Methods and apparatus in a wireless communication system are described for receiving and processing transmit power control commands, where, for example, the response to the transmit power control commands is conditionally decoupled from at least one of a transmit bandwidth parameter, a transport format parameter and a power stepsize limit. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the disclosed subject matter. Therefore, it is to be understood that it should not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
In a wireless communication network that performs Multiple Input Multiple Output (MIMO) communication, uplink power control signals are provided to a user equipment (UE) via a base station signaled power allocation scheme responsive to a determination of whether or not the uplink transmission is in a interference limited condition relative to a neighboring cell.
Abstract:
Techniques for performing channel interleaving to achieve similar SINRs for multiple code blocks are described. In one design, a transmitter station (e.g., a base station or a UE) determines a plurality of resource groups assigned for data transmission. Each resource group includes a plurality of resource elements formed by a cluster of subcarriers in a time interval. The transmitter station partitions a transport block into a plurality of code blocks, processes each code block to obtain data symbols for that code block, and maps the data symbols for each code block to at least one resource element in each of the plurality of resource groups. The transmitter station transmits the mapped data symbols for the plurality of code blocks to a receiver station. In one design, the transmitter station receives an ACK or a NACK for the transport block and retransmits all code blocks if a NACK is received.
Abstract:
A method and apparatus facilitating transmit diversity for control information communications is provided. The method may comprise processing received content, generating control information in response to the processed content, allocating two or more resources associated with two or more transmit antennas for transmitting the control information using a transmit diversity scheme, and determining cyclic shifts by applying a predetermined cyclic shift delta parameter.
Abstract:
Techniques for sending control information relating to multiple downlink carriers and data on a single uplink carrier are described. A user equipment (UE) may be scheduled to transmit on a designated uplink carrier. The UE can multiplex control information for multiple downlink carriers with data for transmission on the uplink carrier in a same sub frame. Multiplexing may be performed according to a type of the control information and/or an ordering, priority, or association of the downlink carriers. The UE can selectively encode the control information separately for each downlink carrier and/or jointly across downlink carriers. The control information may be mapped to a single layer or multiple layers of a data channel. The UE may send the multiplexed control information and data on the data channel in the subframe while maintaining a single-carrier waveform.
Abstract:
Techniques for efficiently multiplexing a reference signal and data on different sets of subcarriers in the same symbol period are described. In one design, a user equipment (UE) performs a discrete Fourier transform (DFT) on a set of modulation symbols for data to obtain data symbols. The UE also obtains reference symbols generated based on a reference signal sequence corresponding to a cyclic shift of a base sequence. The UE maps the reference symbols to a first set of subcarriers and maps the data symbols to a second set of subcarriers. The UE then generates a transmission symbol based on the mapped reference symbols and the mapped data symbols. The UE may also transmit reference signals and data (i) in multiple symbol periods of a slot or a subframe and/or (ii) from multiple antennas using frequency division multiplexing (FDM) or code division multiplexing (CDM).