Abstract:
Methods, systems, and apparatuses are described for a base station initiated control mechanism for supporting supplemental a link. In some aspects, control information associated with a directional, first radio access technology (RAT) for a user equipment (UE) may be identified at a first base station, the first base station configured to communicate with the UE using the directional, first RAT, and the control information associated with the directional, first RAT may be transmitted to a second base station to forward to the UE using a second RAT.
Abstract:
Methods, systems, and devices for wireless communication are described that provide for the indication of communication information using a correlation between synchronization signals transmitted by a base station for cell acquisition. The communication information may include a physical channel timing parameter such as synchronization periodicity, a physical broadcast channel (PBCH) periodicity, a beam sweep periodicity, or a cyclic prefix (CP) type. Communication information may also indicate the presence of a physical broadcast channel (PBCH) transmission or a mobility reference signal (MRS) transmission. The correlation may be a phase shift between multiple signals or may be based on precoding matrices used during transmission processing of the synchronization signals across subcarriers and antenna ports.
Abstract:
A beamforming configuration is changed during a cyclic prefix that precedes a symbol period. For example, the beamforming configuration for a transmitter can be changed during an orthogonal frequency-division multiplexing (OFDM) cyclic prefix that precedes a fast Fourier transform (FFT) window. At the receiver, the cyclic prefix is reconstructed based on the chips received during FFT window. In this way, there is no loss of data signaling due to the transmitter reconfiguring its beamforming.
Abstract:
Methods, systems, and devices for wireless communication are described. A network device, such as a base station, may transmit a request message to a user equipment (UE). The request message may include a request for the UE to transmit a set of sounding reference signals (SRSs). The set of SRSs may include two (or more) beamformed signals. The network device may receive the set of SRSs according to the request message. The network device may identify, based on a co-phasing parameter associated with the two (or more) beamformed signals, an antenna port precoder configuration to use for communicating with the UE.
Abstract:
Methods, systems, and apparatuses are described for using known geographical information in directional wireless communication systems. In some aspects, an estimated position of a receiver relative to a transmitter may be determined based at least in part on known geographical information, and a desired beam direction for wireless communication from the transmitter to the receiver may be searched for based at least in part on the estimated position of the receiver.
Abstract:
A user equipment (UE) may transmit a random access message to a wireless node using multiple symbols. The random access message may include repetitions of a random access sequence weighted by a spreading code. For example, a random access sequence may be weighted using different elements of the spreading code, where a first repetition may be weighted with a first element and a second repetition may be weighted using a second element. The weighted random access signals may be spread over multiple symbols and transmitted to the wireless node as the random access message. In some cases, a spreading code may include values of one and negative one, may be based on rows of a Hadamard matrix, or may correspond to a number of symbols used to transmit the random access message.
Abstract:
Various aspects of the disclosure relate to communicating uplink control information. As one example, a user equipment may send uplink control information to a base station. In some aspects, the number of symbols used to communicate the uplink control information may be based on a link gain associated with the UE and/or based on a payload size of the uplink control information. As another example, the user equipment may send channel information for a number of beams to the base station. In some aspects, the number of beams may be based on the type of channel that is used to send the uplink control information.
Abstract:
Various aspects of the disclosure relate to communicating uplink control information. As one example, a user equipment may send uplink control information to a base station. In some aspects, the number of symbols used to communicate the uplink control information may be based on a link gain associated with the UE and/or based on a payload size of the uplink control information. As another example, the user equipment may send channel information for a number of beams to the base station. In some aspects, the number of beams may be based on the type of channel that is used to send the uplink control information.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may identify two (or more) beamforming directions associated with simultaneous communications to a set of receivers. Each receiver may be associated with a different one of the two beamforming directions. The base station may schedule resources for simultaneous communications with the set of receivers based on the identified two beamforming directions. The base station may schedule simultaneous transmissions to the set of receivers using the scheduled resources.
Abstract:
Methods, systems, and apparatuses are described for advertising information corresponding to beamforming techniques supported by base stations of a wireless communications system, which in various examples may include analog, digital, and/or hybrid beamforming techniques supported by millimeter wave (mmW) base stations. Advertising of supported beamforming techniques may involve transmissions over a nearby long term evolution (LTE) or another carrier frequency network (e.g., in case of LTE/lower carrier frequency assisted mmW wireless access networks). Alternatively or additionally, advertising may employ broadcasting from a mmW base station, which may include mmW beam sweeps. A UE may receive information corresponding to supported beamforming techniques, and may use the received information to select a particular mmW base station with which to communicate or to determine a transmission strategy for communicating with a particular mmW base station, or both.