Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.
Abstract:
A method for facilitating multiple-antenna wireless communication, comprising: employing a wired or wireless communication interface to obtain data identifying a WCD and a potential wireless partner of the WCD; employing a processor to generate indexing parameters facilitating distributed processing for multiple-antenna communication for the WCD or wireless partner; mapping the respective indexing parameters to respective instructions for independent implementation of the communication at the WCD or wireless partner; identifying respective wireless channels and resources for the WCD or wireless partner to be employed in implementing the communication; and employing the communication interface to forward the indexing parameters to the WCD.
Abstract:
Techniques are described for wireless communication. A first method may include inserting, in a first transmission using a first radio access technology (RAT), a channel occupancy identifier for a second transmission using a second RAT. The first method may also include transmitting the first transmission having the channel occupancy identifier over an unlicensed radio frequency spectrum band. A second method may include receiving, at a receiver operated using a first RAT, a channel occupancy identifier for a transmission using a second RAT. The channel occupancy identifier may be received over an unlicensed radio frequency spectrum band. The second method may also include decoding the channel occupancy identifier to identify a backoff period, and refraining from accessing the unlicensed radio frequency spectrum band using the first RAT based at least in part on the identified backoff period.
Abstract:
Systems and methods are described that facilitate evaluating conditions of nodes (e.g., access points, access terminals, etc.) in a wireless communication environment having a plurality of carriers to determine a level of disadvantage for a given node relative to other nodes. The node may transmit a resource utilization message (RUM) that represents the level of disadvantage for the node and request other interference nodes to back off on one or more carriers.
Abstract:
An adaptable decision parameter is used to determine whether to react to resource utilization messages. The decision parameter may comprise a decision threshold that is adapted based on received resource utilization messages. The decision parameter may comprise a probability that is used to determine whether to react to a received resource utilization message. Such a probability may be based on, for example, one or more channel conditions, the number of interferers seen by a node, the number of received resource utilization messages, or some other form of resource utilization message-related information.
Abstract:
Systems and methods are described that facilitate data communication in a wireless communication environment. According to various aspects, a node, such as an access point or an access terminal, may determine a number of channels over which it will transmit a communication signal. The node may then select channels based on whether the channels are available or unavailable, wherein available channels are preferentially selected over unavailable channels. The node may then transmit a signal over the at least one of the selected channels.