Abstract:
A capacitor includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte. The positive electrode includes a positive electrode current collector and a positive electrode active material held on the positive electrode current collector. The positive electrode active material contains activated carbon. The activated carbon has a carboxyl group, and an amount of desorption of carboxyl group per unit mass of the activated carbon is 0.03 µmol/g or less when the activated carbon is heated with a temperature increase from 300°C to 500°C. The capacitor has an upper-limit voltage V u for charging and discharging. The upper-limit voltage V u of a lithium-ion capacitor is 4.2 V or more. The upper-limit voltage V u of an electric double-layer capacitor is 3.3 V or more.
Abstract:
An object of the present invention is to provide, at a low cost, a porous metal body that can be used in an electrode of a fuel cell and that has better corrosion resistance. The porous metal body has a three-dimensional mesh-like structure and contains nickel (Ni), tin (Sn), and chromium (Cr). A content ratio of the tin is 10% by mass or more and 25% by mass or less, and a content ratio of the chromium is 1% by mass or more and 10% by mass or less. On a cross section of a skeleton of the porous metal body, the porous metal body contains a solid solution phase of chromium, nickel, and tin. The solid solution phase contains a solid solution phase of chromium and trinickel tin (Ni 3 Sn), the solid solution phase having a chromium content ratio of 2% by mass or less, and does not contain a solid solution phase that is other than a solid solution phase of chromium and trinickel tin (Ni 3 Sn) and that has a chromium content ratio of less than 1.5% by mass.
Abstract:
Provided is a porous metal body having superior corrosion resistance to conventional metal porous bodies composed of nickel-tin binary alloys and conventional metal porous bodies composed of nickel-chromium binary alloys. The porous metal body has a three-dimensional network skeleton and contains at least nickel, tin, and chromium. The concentration of chromium contained in the porous metal body is highest at the surface of the skeleton of the porous metal body and decreases toward the inner side of the skeleton. In one embodiment, the chromium concentration at the surface of the skeleton of the porous metal body is more preferably 3% by mass or more and 70% by mass or less.
Abstract:
Provided is a capacitor in which, even in the case of a high maximum charging voltage, decomposition of the electrolyte can be suppressed and charging and discharging can be performed with stability. The capacitor includes a positive electrode containing a positive-electrode active material, a negative electrode containing a negative-electrode active material, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the positive-electrode active material contains a porous carbon material, in a volume-based pore size distribution of the porous carbon material, a cumulative volume of pores having a pore size of 1 nm or less accounts for 85% or more of a total pore volume, the porous carbon material has a crystallite size of 1 to 10 nm, the porous carbon material contains an oxygen-containing functional group, and a content of the oxygen-containing functional group is 3.3 mol% or less.
Abstract:
There is provided a metal laminated structure (100) comprising a first metal layer (1), a second metal layer (2) and a third metal layer (3), the first metal layer (1) being disposed on one surface of the second metal layer (2), the third metal layer (3) being disposed on the other surface of the second metal layer (2), the first metal layer (1) including at least one of tungsten and molybdenum, the second metal layer (2) including copper, the third metal layer (3) including at least one of tungsten and molybdenum, and a method for producing the metal laminated structure (100).
Abstract:
Provided are a fuel cell that employs a fuel-electrode collector excellent in terms of thermal conductivity and the like, so that it is excellent in terms of power generation efficiency and cost effectiveness; and a method for operating the fuel cell. Included are a membrane electrode assembly (MEA), a fuel-electrode collector that is a porous metal body disposed in contact with a fuel electrode and performing current collection, and a heating device operated by electric power, wherein a solid electrolyte is a proton-permeable electrolyte, a fuel-gas channel is provided to cause a fuel gas to pass through the fuel-electrode collector, and the porous metal body constituting the fuel-electrode collector is formed of aluminum or aluminum alloy.
Abstract:
An object is to provide a solid electrolyte laminate that allows a large amount of gas to be supplied to a fuel electrode while having improved strength and a method for manufacturing such a solid electrolyte laminate. A solid electrolyte laminate 1 includes a solid electrolyte layer 2, a first electrode layer 3 disposed on one side of the solid electrolyte layer, and a second electrode layer 4 disposed on another side of the solid electrolyte layer. At least the first electrode layer, which forms a fuel electrode, includes a bonding layer 3a bonded to the solid electrolyte layer and a porous layer 3b having continuous pores and integrally formed on the bonding layer.
Abstract:
A battery (1) including a positive electrode (4), a negative electrode (3) mainly composed of sodium, and an electrolyte provided between the positive electrode (4) and the negative electrode (3), the electrolyte being molten salt containing anions expressed with chemical formula (I) below and cations of metal, R 1 and R 2 in the chemical formula (I) above independently representing fluorine atom or fluoroalkyl group, the cations of metal containing at least one of at least one type of cations of alkali metal and at least one type of cations of alkaline-earth metal, as well as an energy system including the battery (1) are provided.