Abstract:
An electro-optic rearview mirror assembly for a vehicle includes a caseless electro-optic rearview mirror reflective element and a plate attached at the rear of the reflective element. The mirror reflective element connected to and pivotal about a windshield electronics module via a ball and socket pivot joint. Control circuitry may be disposed in a windshield electronics module for automatically controlling dimming of the electro-optic medium or alternatively, dimming of the electro-optic medium is automatically controlled via a multifunctional rear backup camera system of the equipped vehicle. Optionally, the control circuitry controls dimming of the electro-optic medium of the mirror reflective element via wiring that passes through the ball and socket pivot joint. Optionally, image data captured by the multifunctional rear backup camera may be used for ambient light determination and to provide video image display at the interior rearview mirror assembly.
Abstract:
An exterior rearview mirror assembly includes a non-movable portion, a movable portion and a mirror head. The non-movable portion is configured for attachment at an exterior portion of a vehicle and the movable portion is movable relative to the non-movable portion. The mirror head is movable relative to the movable portion, and a mirror reflective element is fixedly attached at the mirror head. A first actuator is operable to move the movable portion relative to the non-movable portion about a first axis and a second actuator is operable to move the mirror head relative to the movable portion about a second axis. The first and second actuators are cooperatively operable to move the movable portion about the first axis and to move the mirror head about the second axis, and the mirror reflective element moves in tandem with movement of the mirror head.
Abstract:
A window assembly for a vehicle includes outer and inner window panels and a spacer element disposed therebetween to establish an interpane cavity between the inner and outer window panels. At least one of (a) the outer window panel has a larger cross dimension relative to the inner window panel to provide overhang regions, and (b) the inner window panel has a different contour or curvature than that of the outer window panel so that the interpane cavity varies in gap distance across the window assembly. A roller shade is disposed in the cavity and is electrically deployable to coil and uncoil between a coiled light transmitting condition, where the roller shade functions to substantially allow light transmission through the window assembly, and an at least partially uncoiled light attenuating condition, where the roller shade functions to at least partially attenuate light transmission through the window assembly.
Abstract:
A digital sound processor is provided to enhance the vocal to non-vocal noise ratio of the signal processed by a vehicle audio system such as a cellular telephone, emergency communication device, or other audio device. Optionally, an indicator (72) is provided for use with the vehicular audio system in order to provide a user of the audio system with a status signal relating to a reception quality of a vocal signal from the user. The microphone (18) of the audio system may be mounted within an accessory module (10), which may be mounted to an interior surface of a vehicle windshield (12). The accessory module (10) provides a fixed orientation of the microphone (18) and is easily installed to the vehicle as it is manufactured or as an aftermarket device. The indicator (72) may be mounted at the accessory module (10) or elsewhere at the mirror assembly.
Abstract:
An exterior rearview mirror assembly includes a non-movable portion, a movable portion and a mirror head. The non-movable portion is configured for attachment at an exterior portion of a vehicle and the movable portion is movable relative to the non-movable portion. The mirror head is movable relative to the movable portion, and a mirror reflective element is fixedly attached at the mirror head. A first actuator is operable to move the movable portion relative to the non-movable portion about a first axis and a second actuator is operable to move the mirror head relative to the movable portion about a second axis. The first and second actuators are cooperatively operable to move the movable portion about the first axis and to move the mirror head about the second axis, and the mirror reflective element moves in tandem with movement of the mirror head.
Abstract:
A vision system for a vehicle includes an exterior rearview mirror assembly mounted at an exterior portion of a door of a vehicle, an imaging sensor having a field of view exterior the vehicle and a video display screen operable to display video images captured by the imaging sensor. The video display screen is disposed at an interior portion of the vehicle door at which the exterior rearview mirror assembly is mounted. The exterior rearview mirror assembly and the video display screen may be part of a mirror and display module that is mountable at the vehicle door as a unit. The camera may be disposed at the exterior rearview mirror assembly.
Abstract:
A vehicular imaging and display system includes a rear backup camera at a rear portion of a vehicle, a video processor for processing image data captured by the rear camera, and a video display screen responsive to the video processor to display video images. During a reversing maneuver of the equipped vehicle, the video display screen displays video images captured by the rear camera. During forward travel of the equipped vehicle, the video display screen is operable to display images representative of a portion of the field of view of the rear camera to display images representative of an area sideward of the equipped vehicle responsive to at least one of (a) actuation of a turn signal indicator of the vehicle, (b) detection of a vehicle in a side lane adjacent to the equipped vehicle and (c) a lane departure warning system of the vehicle.