Abstract:
Disclosed herein is an apparatus and method for growing a diamond. The apparatus for growing a diamond comprises: a reaction cell that is configured to grow the diamond therein; a main heater including a main heating surface that is arranged along a first inner surface of the reaction cell; and a sub-heater including a sub-heating surface that is arranged along a second inner surface of the reaction cell, the second inner surface being non-parallel with the first inner surface.
Abstract:
In one aspect of the present invention, a cartridge assembly for connection to the frame of a high-pressure, high-temperature press comprises a front end comprising a back-up intermediate and coaxial with an anvil and a piston, the anvil comprising a proximal end in contact with the back-up and a distal end that forms part of a pressurized chamber within the frame, the back-up comprising a proximal end comprising a first diameter proximate an interface with a distal end of the piston, and a distal end comprising a second diameter proximate an interface with the proximal end of the anvil, the back-up comprising one or more circumferential reliefs disposed on the first diameter.
Abstract:
A cartridge assembly for connection to the frame of a high pressure, high temperature press, comprising a front end. The front end may comprise a back up with a conical portion intermediate and coaxial with an anvil and a piston. The anvil may comprise a proximal end in contact with the back-up and a distal end being adapted to form part of a pressurized chamber within the frame. The back-up may comprise a truncated cylinder comprising a first and second interface that are joined by a peripheral cylindrical wall. The cylindrical wall may also comprise a portion extending normally from the periphery of the first interface to a net concave portion of the cylindrical wall. The net concave portion may extend from the normal portion of the cylindrical wall to the periphery of the second interface which abuts the anvil.
Abstract:
A cartridge assembly for connection to a frame of a high temperature, high pressure press, having an anvil at a front end of a cylindrical body of the cartridge and a hydraulic chamber within the body adapted to apply axial pressure to the anvil. A radial compression element is disposed around an outer diameter of the body and is adapted to limit radial expansion of the body proximate the hydraulic chamber.
Abstract:
A cartridge assembly for connection to a frame of a high temperature, high pressure press, having an anvil at a front end of a cylindrical body of the cartridge and a hydraulic chamber within the body adapted to apply axial pressure to the anvil. A radial compression element is disposed around an outer diameter of the body and is adapted to limit radial expansion of the body proximate the hydraulic chamber.
Abstract:
An improved high pressure apparatus can include a plurality of complementary die segments. The die segments can have inner surfaces which are shaped to form a die chamber upon assembly of the die segments. A pair of anvils can be oriented such that an anvil is at each end of the die chamber. To prevent the die segments from being forced apart during movement of the anvils, force members can be connected to the die segments. The force members can apply discrete forces to the die segments sufficient to retain the die segments in substantially fixed positions relative to each other during application of force by the pair of anvils. Using such a high pressure apparatus can achieve pressures as high as 10 GPa with improved useful die life and larger reaction volumes.
Abstract:
A method for producing a semiconductor diamond containing boron by the high pressure synthesis method, wherein a graphite material to be converted to the semiconductor diamond is mixed with boron or a boron compound, formed and fired, in such a way that the resultant graphite material contains a boron component uniformly dispersed therein and has an enhanced bulk density, a high purity and a reduced content of hydrogen.
Abstract:
A very-high pressure generator of construction such that the lower and upper guide blocks of the generator are each configured so as to form a pyramidal recess on the bottom surface and an upside-down pyramidal recess on the top surface accurately symmetrically, their pyramidal slopes given one and the same angle of inclination, and are prevented from being deformed under high pressure not by enlarging the guide blocks and the press, but by making the support conditions of all the anvils of the generator uniform, the positions of the anvils can easily be adjusted, and therefore the generator is capable of pressurizing a pressure-transmitting medium into the shape of a desired cube accurately. Each of the lower and upper guide blocks has a pyramidal recess in its bottom surface and an upside-down pyramidal recess in its top surface and is symmetric with respect to its horizontal center plane. Each of lower and upper base blocks has a lower upside-down pyramidal portion and an upper pyramidal portion. The upper base block is disposed at the center of the lower pyramidal recess of the upper guide block. An upper downward pyramidal block is disposed between the press frame and the upper upside-down pyramidal recess of the upper guide block.
Abstract:
Ultra-high pressure generation by using a new pressure transmitting medium consisting essentially of powder of an inorganic material having high hardness and cleavage.