Abstract:
The invention relates to lighter-than-air vehicles. The inventive aircraft comprises a rigid body with carrier gas-containing shells and propulsers arranged inside aerodynamic modules which are embodied in the form of aerodynamically shaped toroidal bodies of revolution. A longitudinal through passage in embodied in the lower part of the body in such a way that it communicates a crew cabin, a cargo-and-passenger compartment, fuel tanks and accessories and is provided with exit hatches and devices for docking to external objects, an extensible stairway with fences and a demountable carriage. The aircraft also comprises a transversal passage with overwing exits and a vertical passage provided with a cable hoist and devices for lowering and lifting people and cargo. The lower part of the body and hollow wings are filled with a foamed plastic which is used for providing the aircraft with floatability and strength. The aim of the invention is to extend the list of technical means.
Abstract:
Systems, method, devices and apparatus are provided for reducing drag and increasing the flight efficiency characteristics of aircraft and airships including hybrid aircraft utilizing distributed boundary layer control and propulsion means. Boundary layer control includes passive systems such as riblet films and boundary layer propulsion means includes a divided and distributed propulsion system disposed in the curved aft sections of aircraft and airships including hybrid aircraft susceptible to boundary layer drag due to degree of curvatures, speed and density of the surrounding air. Distributed propulsion propulsion means includes constructing propellers and riblets from shape memory alloys, piezoelectric materials and electroactive polymer (EAP) materials to change the shape and length of the distributed propulsion means.
Abstract:
The invention is an aircraft having an inflatable wing connected to a base unit, with the inflatable wing inflated with a lifting gas such as helium. The inflatable wing has a series of cell structures, and may be configured with ballonets to selectively introduce and expel outside air within the inflatable wing to vary the buoyancy and/or airfoil properties of the inflatable wing. The aircraft is particularly useful at low speeds and in thin atmospheres (such as at high Earth altitudes and on Mars), and can be used for interplanetary missions to explore planetary bodies, such as moons and planets, having atmospheres.
Abstract:
The aircraft (10) comprises an elongated framework (26) provided with propelling means and direction-control planes. The framework is coupled to a pneumatic chamber (16) suited to be filled with lighter-than-air gas and comprising two tubular branches (12, 14) joined to form a V-shaped profile, with an aerodinamic-lift surface (22, 24) extending therebetween.
Abstract:
Integration of structure and aerodynamic shape results in a Damage Resistant Unmanned Aircraft, Capable of surviving ground handling and impacts with plants, wires, solid objects and water. The structure dismantles for transport and storage into a small space, that is resistant to damage. The aerodynamic arrangement has a improved ability to fly controllably in the gusty environment that causes difficulty for small light weight aircraft. A method of mounting pneumatic and fabric shapes onto a Damage Resistant Aircraft with parts facilitating a round structure. Use of the pneumatic shapes to adjust the length and stiffness of the post. The post produces tension on the structure that It presses against. Inflatable post ends and an attachment system. Multi piece removable wing tips which allow deflation, access and small folding volume of the inflatable structure. All tension rudders are formed inside the net structure where it is protected from damage.
Abstract:
A solar-powered aircraft uses solar energy to electrolyze on-board water to produce hydrogen. The hydrogen fills various on-board tanks, causing the aircraft to become lighter than air. The hydrogen is also used to operate a fuel cell which provides power for electrical equipment, including a motor for turning a propeller. Water produced as waste by the fuel cell is recycled for use in the production of hydrogen. When hydrogen is removed from the tanks, either because it is consumed by the fuel cell or because it is compressed and pumped out of the tanks, air returns to the tanks, and the aircraft becomes heavier than air. The aircraft can thus be made to climb and descend by making it lighter than air, or heavier than air. The aircraft emits no harmful substances into the environment. The aircraft can remain aloft indefinitely, limited only by an insignificant amount of leakage of hydrogen and water.
Abstract:
A hybrid air vehicle having a gas-filled contoured flattened hull including a pair of longitudinally extending side lobes defining, on the underside of the hull, a longitudinally extending central recess, a payload module received in the central recess and air cushion landing gear units on the underside of the side lobes of the hull. The landing gear units are spaced apart on either side of the payload module. The hybrid air vehicle has characteristics of an airplane, a lighter-than-air airship and a hovercraft.
Abstract:
A hybrid air vehicle having a gas-filled contoured flattened hull including a pair of longitudinally extending side lobes defining, on the underside of the hull, a longitudinally extending central recess, a payload module received in the central recess and air cushion landing gear units on the underside of said side lobes of the hull. The landing gear units are spaced apart on either side of the payload module. The hybrid air vehicle has characteristics of an airplane, a lighter-than-air airship and a hovercraft.
Abstract:
A hybrid annular airship of the kind including an annulus containing at least one gas containing portion is disclosed which is characterized by improved maneuverability, stability and speed. This improvement is effected by combined means comprising a pair of tubes mounted diametrically within the annulus and normal one to the other. A plurality of doors are provided for selectively closing off one or the other of the pair of tubes. Each tube is provided with a propulsion unit, having an access port, and preferably reversibly mounted therein. The tubes either are mounted on the same level or at different levels. Preferably, the propulsion units are jet engines which are individually operable. An elevator and a walkway preferably are provided communicating with each of the access ports leading to the propulsion units. Preferably, each access port has its own opening and closing mechanism.
Abstract:
An aircraft is provided utilizing a spherical balloon filled with buoyant gas such as helium at a pressure substantially greater than atmospheric so that its dimensions are substantially unaffected by changes in atmospheric pressure or temperature. The aircraft may take the form of a self-propelled and self-contained airship, or may be merely a passive device for providing lift and intended to be towed by and controlled from a helicopter. The spherical balloon is mounted on a normally horizontal axle having end portions projecting from opposite sides of the balloon, and includes a rigid load supporting yoke including two arms extending upwardly from a central load supporting structure and each with an upper end suspended from the axle.