Abstract:
Process for the production of a polymer foam with use of hydrogel pearls as porosity generating template, comprising the steps of:—providing a matrix of polymer or prepolymer in viscous state including, as a dispersed phase, hydrogel pearls, where said pearls are dispersed in said matrix so as to generate intercommunicating cells,—causing the solidification of the matrix of polymer or prepolymer to obtain said polymer foam including said hydrogel pearls, characterised in that it comprises the operation of subjecting the thus obtained foam to conditions which cause the dehydration of said hydrogel pearls so as to obtain a reduction of volume of said pearls and—removing the dehydrated pearls by immersion in water of the polymer foam or by exposure of the foam to a flow of pressurized gas or water.
Abstract:
A new conductive interconnected porous film, useful as a material for a gas diffusion layer which is used in a solid polymer type fuel cell, which satisfies the requirements of a good conductivity, good gas permeability, surface smoothness, corrosion resistance, and low impurities and which is strong in bending and excellent in handling to an extent not obtainable by existing sheet materials of carbon fiber, that is, a conductive interconnected porous film wherein a resin base material part of a thermoplastic resin has a porous interconnected cell structure which is formed by removal of removable particulate matter and has cells of sizes of 10 μm to 50 μm and wherein the resin base material part is comprised of different particle size particles of first carbon particles of large size carbon particles of a diameter of 5 μm or more and second carbon particles of micro size carbon particles of a diameter of 10 nm or more mixed together, and a method of production of the same.
Abstract:
An object of the present invention is to provide an electrically insulating resin sheet which is excellent in heat resistance and insulating properties and is able to maintain a predetermined shape even after applying an external force to the sheet to deform the sheet into a predetermined shape and removing the external force. An electrically insulating resin sheet having a porosity of 10 to 60%, a stress relaxation ratio of 20% or more when the sheet is extended by 5% at 23° C. and maintained for 10 minutes, and an insulation breakdown voltage of 25 kV/mm or more.
Abstract:
A composition containing poly(lactic acid), at least one bacteriocin (e.g., nisin, generally in the form of Nisaplin®), and at least one plasticizer (e.g., lactic acid, lactide, triacetin, glycerol triacetate), and optionally at least one pore forming agent. A method of making the composition, involving mixing about 100% of the total of the poly(lactic acid), about 50% to about 90% of the total of the at least one plasticizer, and optionally at least one pore forming agent at a first temperature of about 150° to about 170° C. to form a mixture, cooling the mixture to a second temperature of about 115° to about 125° C., adding at least one bacteriocin and about 10% to about 50% of the total of the at least one plasticizer and the remainder of the total of the poly(lactic acid) to the mixture and mixing to form the composition.
Abstract:
A method of producing a porous molded part includes a mixing process for mixing a granular porous organizer composed of a water-soluble compound, a porous forming assistant agent composed of a polyhydric alcohol, and a cross-linking agent composed of an organic peroxide with a thermoplastic resin composition having a glass transition temperature below 0° C. to obtain a molding material; a cross-linking and forming process for placing the molding material in a molding die and performing a heat press molding thereby progressing coincidentally a cross-linking reaction and a shape forming of a seal face to obtain a molded material; an extracting process for extracting the granular porous organizer from the molded material obtained in the cross-linking and forming process to obtain a porous molded part; and a drying process for drying the porous molded part obtained in the extracting process.
Abstract:
The present invention provides an air-permeable porous structural body that can be used for a vent plug or the like and imposes a low environmental load in waste treatment or the like after use, and also provides a vent plug using the porous structural body. Further, the invention provides an air-permeable porous structural body that can be molded by injection molding that has high productivity. The porous structural body has an overall structure entirely occupied by a structure composed of an infinite number of spherical or ellipsoidal cavities having a diameter of 1 μm to 100 μm. Holes are open in cavity walls and the cavity is linked to another cavity by the holes. The inside of the porous structural body is constituted by communicating open passages that pass in a meandering fashion between the inlet and outlet of the porous structural body and are composed of a plurality of cavities that are joined with each other in a chain configuration, and chain closed passages that are composed of one cavity or a plurality of cavities and connected to the communicating open passages. Further, 50 to 60% of the cavities per unit cube are cavities having a diameter of less than 10 μm.
Abstract:
Microporous structures characterized by having a three-dimensional interconnecting network skeleton, which are obtained by comprising mixing a thermoplastic resin, a water-soluble organic compound and a water-soluble polymer material and then eliminating said water-soluble organic compound and said water-soluble polymer material by extracting with water. A process for producing microporous structures comprising mixing a thermoplastic resin with water-soluble components which contain a water-soluble organic compound and a water-soluble polymer material, at a specific volume ratio, thus forming a mixture having a three-dimensional interconnecting network skeleton made of said thermoplastic resin wherein said water-soluble components are maintained, bringing said mixture into contact with water and thus extracting and eliminating said water-soluble components from said mixture, wherein a volume ratio of the water-soluble organic compound to the water-soluble polymer material ranges from 35 to 95/65 to 5.
Abstract:
A microporous polymeric film of high porosity comprises a halopolymer in which the repeating units are --(C.sub.n H.sub.2n)-- and --(C.sub.m X.sub.2m)-- in which each X independently represents fluorine or chlorine and the values of n and m are greater than one and less than six. The film is the result of firstly melt processing a mixture of the halopolymer, more than 150 parts by weight of an extractable salt and not more than 80 parts by weight of an extractable polymer per 100 parts by weight of the halopolymer, the extractable polymer not being completely and homogeneously mixed with the halopolymer and being less viscous than the halopolymer when both are molten so that the surfaces of the film resulting from melt processing are rich in the extractible polymer, and secondly extracting at least some of the extractable salt to render the film porous and extracting at least some of said polymer to impart surface porosity to the film. The film has a porosity of more than 50% by volume and more usually 60-70%. The film may be used as the separator of an electrochemical cell e.g. a battery having a lithium anode and a thionyl chloride electrolyte.
Abstract translation:高孔隙率的微孔聚合物膜包括其中重复单元为 - (C n H 2n) - 和 - (C m X 2 m) - 的卤代聚合物,其中每个X独立地表示氟或氯,并且n和m的值大于1和小于 六。 该膜是首先将卤代聚合物的混合物熔融加工的结果,每100重量份的卤代聚合物,超过150重量份的可萃取盐和不超过80重量份的可萃取聚合物,所述可萃取聚合物不是 与卤代聚合物完全和均匀地混合,并且当两者都熔融时比卤代聚合物粘度小,使得由熔融加工产生的膜的表面富含可萃取的聚合物,其次提取至少一些可提取盐,使得 薄膜多孔并提取至少一些所述聚合物以赋予膜表面多孔性。 该膜的孔隙率大于50体积%,更通常为60-70%。 该膜可以用作电化学电池的隔板,例如, 具有锂阳极和亚硫酰氯电解质的电池。