Abstract:
The present invention provides among other things methods for preparing polymeric reagents, wherein the method comprises (a) providing an aromatic moiety bearing a hydroxy group, a first amino group and a second amino group; (b) reacting a functional group reagent with the hydroxy group to result in a hydroxy group bearing a functional group capable of reacting with an amino group of an active agent and resulting in a hydolyzable carbamate; and (c) reacting a plurality of poly(alkylene glycol) water-soluble polymers bearing a reactive group with the first amino group and second amino group to result in (i) a first amino group bearing a water-soluble polymer through a spacer moiety, and (ii) a second amino group bearing a second water-soluble polymer through a spacer moiety.
Abstract:
This invention relates to a method of forming a polymer component and comprises blending polymer particles with antioxidant to form a mixture in which the antioxidant coats the polymer particles, irradiating the mixture to cross-link the polymer particles therein and forming the irradiated mixture into a consolidated component. The invention also relates to a method of forming an articular surface for a prosthesis and a prosthesis having a polymer articular bearing surface wherein at least one pre-determined portion of the bearing surface is provided with cross-linked polymer bonds.
Abstract:
The present invention relates to acrylic adhesive composition comprising a mixture of at least one polyol tri(meth)acrylate monomer and at least one polyalkylene glycol mono(meth)acrylate monomer for assembling elements made of plastic materials, like PMMA or SAN, or inorganic material, like glass or metals, employed for manufacturing of devices for the distribution or containment of biological substances, like proteins, enzymes, antibodies, antigens, DNA, and the like. The present invention also relates to devices for the distribution or containment of biological substances assembled with the above mentioned acrylic adhesive composition, and particularly thermal or piezoelectric ejecting devices, and biochip microarray, as well as to a method for assembling thereof.
Abstract:
An energy curable inkjet ink includes a nitroxy inhibitor, a compound having an ethylenic unsaturated bond, a photoinitiator, a coloring agent, and a stray light resistance index of at least 7. A method of preparing an energy curable inkjet ink with stray light resistance includes providing a nitroxy inhibitor; providing a mixture of a compound having an ethylenic unsaturated bond, and a photoinitiator, and a coloring agent; combining the nitroxy inhibitor and the mixture to obtain the energy curable inkjet ink and thereby to increase a stray light resistance index of the energy curable inkjet ink to at least 7.
Abstract:
The present invention provides among other things methods for preparing polymeric reagents, wherein the method comprises (a) providing an aromatic moiety bearing a hydroxy group, a first amino group and a second amino group; (b) reacting a functional group reagent with the hydroxy group to result in a hydroxy group bearing a functional group capable of reacting with an amino group of an active agent and resulting in a hydrolyzable carbamate; and (c) reacting a plurality of poly(alkylene glycol) water-soluble polymers bearing a reactive group with the first amino group and second amino group to result in (i) a first amino group bearing a water-soluble polymer through a spacer moiety, and (ii) a second amino group bearing a second water-soluble polymer through a spacer moiety.
Abstract:
The invention relates to compounds of the structure of formula I and II: where X is selected from the group consisting of O, S and NH; Y, A and B are independently selected from the group consisting of N and CH; D, E and F are independently selected from the group consisting of CH, N, O and S; the symbol — represents a single or a double bond; and R1, R2 and R3 are independently selected from the group consisting of H, electron withdrawing groups and electron releasing groups. In other embodiments, the compounds are used as oxygen scavengers and in barrier compositions and articles.
Abstract:
This invention related to a method of forming a polymer component and comprises blending polymer particles with antioxidant to form a mixture in which the antioxidant coats the polymer particles, irradiating the polymer particles to cross-link the polymer particles therein and forming the irradiated mixture into a consolidated component. The invention also relates to a method of forming an articular surface for a prosthesis and a prosthesis having a polymer articular bearing surface wherein at least one predetermined portion of the bearing surface is provided with cross-linked polymer bonds.
Abstract:
A composition which includes a plastic matrix, an acid-activatable metal component selected from aluminium (Al), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), tin (Sn), cobalt (Co) and manganese (Mn); and at least one acid carrier which in the RoO test has a rate of oxidation (RoO=rate of oxidation) of less than 1000 ppm of iron with a reaction time of 60 min.
Abstract:
The present invention is to a composition made from a polyester produced by the acid or ester polyester process, a cobalt salt and a base, preferably an alkaline metal base. The composition can be made by blending a cobalt salt with a polyester which has been polymerized in the presence a alkaline metal ion derived from a basic alkaline metal compound, e.g. alkaline metal base or basic alkaline metal salt. The composition may optionally comprise an ionic compatibilizer, which may further be blended with a partially aromatic polyamide. This blend can be processed into a container having both active and passive oxygen barrier with an improved color and clarity than that achieved by cobalt alone. The use of the cobalt salt in combination with the base can also be used to improve the color of recycled polyester durin processing.
Abstract:
A gas barrier laminate is provided that can maintain excellent gas barrier properties of a cellulose film even under high humidity and that can suppress entry or permeation of water vapor or dirt, which cause deterioration, into the film. The gas barrier laminate includes a base material, and a gas barrier layer provided on at least one side of the base material. The gas barrier layer contains at least cellulose fibers and one or more kinds of water-soluble polymer. Additionally, the fiber width of the cellulose fibers falls within a range of 3 nm to 50 nm.