Abstract:
The tire has a radial carcass reinforcement, the seat diameter of which is strictly greater than 19.5 inches. The metal reinforcing elements of the at least one layer of the carcass reinforcement are layered cords which include several steel threads that have a weight content of carbon C such that 0.01%≤C
Abstract:
A product comprising a plurality of interlaced yarns wherein at least a first yarn having a tensile strength, having a value TS in N/tex, said first yarn containing a plurality of UHMWPE fibers having a titer, having a value T in den, wherein the ratio T/TS is at least 5 den.tex/N. The tensile strength is obtained by adjusting the drawing ratio or the UHMWPE filaments/fibers accordingly. The product shows resistance to abrasion. The product can be a rope or round slings, comprising a sheath/jacket comprising said first yarn.
Abstract:
An aramid textile cord (50) with at least triple twist (T1, T2, T3) comprises at least N strands (20a, 20b, 20c, 20d), N being greater than 1, twisted together with a final twist T3 and a final direction D2, each strand being made up of M pre-strands (10a, 10b, 10c), M being greater than 1, themselves twisted together with an intermediate twist T2 (T2a, T2b, T2c, T2d) and an intermediate direction D1 opposite to D2, each pre-strand itself consisting of a yarn (5) which has been twisted on itself beforehand with an initial twist T1 (T1a, T1b, T1c) and the direction D1, in which at least half of the N times M yarns are aramid yarns. This textile cord can advantageously be used as a reinforcer in tires for vehicles, particularly in the belt or carcass reinforcement of these tires.
Abstract:
A textile cord (50) with at least triple twist (T1, T2, T3) comprises at least N strands (20a, 20b, 20c, 20d), N being greater than 1, twisted together with a final twist T3 and a final direction D2, each strand being made up of M pre-strands (10a, 10b, 10c), M being greater than 1, themselves twisted together with an intermediate twist T2 (T2a, T2b, T2c, T2d) and an intermediate direction D1 opposite to D2, each pre-strand itself consisting of a yarn (5) which has been twisted on itself beforehand with an initial twist T1 (T1a, T1b, T1c) and the direction D1, in which at least half of the N times M yarns have an initial elastic modulus denoted Mi which is greater than 800 cN/tex. This textile cord can advantageously be used as a reinforcer in tires for vehicles, particularly in the belt or carcass reinforcement of these tires.
Abstract:
A steel cord having a plurality of strands twisted together with a cord twist pitch. Each strand having a plurality of filaments twisted together with a strand twist pitch. The elongation at break of the steel cord is no less than 5%. The strand having a strand twist angle. The steel cord having a cord twist angle. When the sum of the strand twist angle and the cord twist angle is between 20 and 29 degree, the structural elongation of the steel cord is no less than 2.0%. When the sum of the strand twist angle and the cord twist angle is between 30 and 38 degree, the structural elongation of the steel cord is no less than 2.5%. When the sum of the strand twist angle and the cord twist angle is between 39 and 48 degree, the structural elongation of the steel cord is no less than 3.0%.
Abstract:
J strands form a core. K outer strands are wound around it in a helix with pitch PK, each having a cord with an L wire inner layer of diameter d1, and an M wire outer layer of diameter d2, wound around the inner layer in a helix with pitch p2; with (in mm): 0.10
Abstract:
Stranded composite cables include a single wire defining a center longitudinal axis, a first multiplicity of composite wires helically stranded around the single wire in a first lay direction at a first lay angle defined relative to the center longitudinal axis and having a first lay length, and a second multiplicity of composite wires helically stranded around the first multiplicity of composite wires in the first lay direction at a second lay angle defined relative to the center longitudinal axis and having a second lay length, the relative difference between the first lay angle and the second lay angle being no greater than about 4°. The stranded composite cables may be used as intermediate articles that are later incorporated into final articles, such as overhead electrical power transmission cables including a multiplicity of ductile wires stranded around the composite wires. Methods of making and using the stranded composite cables are also described.
Abstract:
A cord for rubber reinforcement of the present invention includes a core strand including a plurality of strands (A), and a plurality of strands (B) disposed around the core strand. In the core strand, the plurality of strands (A) are finally twisted, and each of the plurality of strands (A) is formed of a plurality of reinforcing fibers (A) that are primarily twisted. Each of the plurality of strands (B) is formed of a plurality of reinforcing fibers (B) that are primarily twisted, and the plurality of strands (B) are finally twisted to be disposed around the core strand. The direction of final twist of the plurality of strands (B) is the same as the direction of primary twist in at least one strand (B) selected from the plurality of strands (B). The number of primary twists in the strand (B) is greater than the number of primary twists in the strand (A), and/or the number of final twists of the strands (B) is greater than the number of final twists of the strands (A).
Abstract:
Stranded composite cables include a single wire defining a center longitudinal axis, a first multiplicity of composite wires helically stranded around the single wire in a first lay direction at a first lay angle defined relative to the center longitudinal axis and having a first lay length, and a second multiplicity of composite wires helically stranded around the first multiplicity of composite wires in the first lay direction at a second lay angle defined relative to the center longitudinal axis and having a second lay length, the relative difference between the first lay angle and the second lay angle being no greater than about 4°. The stranded composite cables may be used as intermediate articles that are later incorporated into final articles, such as overhead electrical power transmission cables including a multiplicity of ductile wires stranded around the composite wires. Methods of making and using the stranded composite cables are also described.
Abstract:
There are provided a pneumatic radial tire of heavy load vehicles, in which durability of a belt is improved.A pneumatic radial tire for heavy load vehicles comprises a pair of bead portions in each of which a bead core is embedded, a radial carcass ply 1 extending from one bead portion to the other bead portion and turned around the bead core from an inner side to an outer side of the bead core in a width direction of the tire and at least six belt layers 2 disposed on an outer side of this radial carcass ply 1 in a radial direction of the tire, wherein the following relations are satisfied: W56>W34>W12, where W12 is a maximum width of first and second belts 2a f the belt layers 2, W34 is a maximum width of third and forth belts 2b of the belt layers 2 and W56 is a maximum width of fifth and sixth belts 2c of the belt layers 2; and 1>D12/D34>0.6, where D12 is a cord diameter of the first and second belts and D34 is a cord diameter of the third and forth belts. In addition, a steel cord of each belt layer has a double twist structure in which a plurality of steel filaments are twisted to form a cable and two to ten cables are further twisted.