Abstract:
A steel structure adapted for the reinforcement of elastomeric members has steel elements containing a plurality of steel filaments at least one of which filaments is provided with first and second crimps. The first crimp lies in a plane that is substantially different from the plane of the second crimp. Application of the both crimps can be carried out efficiently using two pairs of toothed wheels which are not externally driven. This arrangement renders it possible to obtain steel structures with an increased penetration of rubber or with an increased elongation at break.
Abstract:
A steel structure adapted for the reinforcement of elastomeric members has steel elements containing a plurality of steel filaments at least one of which filaments is provided with first and second crimps. The first crimp lies in a plane that is substantially different from the plane of the second crimp. Application of the both crimps can be carried out efficiently using two pairs of toothed wheels which are not externally driven. This arrangement renders it possible to obtain steel structures with an increased penetration of rubber or with an increased elongation at break.
Abstract:
A steel cord for reinforcing a rubber product has a multilayer structure consisting of two or more layers including a core, or a structure consisting of seven or more strands twisted in the same direction at the same pitch. In the steel cord, at least one of three strands that are successively adjacent to one another or that are in mutual contact is formed of two filaments that are paired substantially parallel to each other. The direction of pairing the two filaments of each strand is substantially the same over the entire length of the cord. Each of the remaining strands is formed of a single filament.
Abstract:
A high tensile steel strand for civil engineering applications comprises a core wire (11) and a ring of outer wires (12) arranged in a helical pattern around the core wire and in contact with the core wire. The number and the diameter of the outer wires in relation to the core wire are such that there are significant gaps (13) between adjacent outer wires. The strand is used as an anchorage in rock and a bonding agent between the strand and the rock penetrates gaps (13) to provide effective bonding. The strand is sufficiently flexible to be inserted in deep bores in rock even when surrounding space does not permit straight insertion of the strand.
Abstract:
A steel cord for the reinforcement of rubber articles has a three-layer twisting structure comprising a core of 2 steel filaments, a middle sheath layer of 6 steel filaments and an outer sheath layer of 11 steel filaments, in which a ratio of filament diameter ds in the middle and outer sheath layers to filament diameter dc in the core (ds/dc) is within a range of 1.15-1.5 and a twisting pitch of the core is not less than 20 mm, and is used as a reinforcing member in a heavy duty pneumatic radial tire, conveyor belt and the like.
Abstract:
A steel cord comprising a number (between 3 and 27) of element steel wires tightly twisted at a regular pitch P between 5 and 20 mm in the same direction. Each wire has a diameter d between 0.1 and 0.4 mm. At least one of the wires includes a spiral portion having a spiral pitch P1 between 0.1P and 0.7P and a spiral diameter d1 between d+2/100 mm and d+2/10 mm. At least one other wire includes a straight portion. At any cross section of the cord, 1/4 through 2/3 of the wires is/are spiral and the other wire/s is/are straight. The stretch of the cord under a load of 5 kg is between 0.10 and 0.40%. A method of producing a steel cord comprises supplying a number of element steel wires, forming at least part of at least one of the wires to be spiral, and tightly twisting the wires. An apparatus for producing a steel cord comprises feeders supported by a frame, each feeding an element steel wire along an axis, a tension device for applying a tension to the wire from at least one of the feeders, a spiral device having pins which extend across and are spaced along an axis, so that at least one of the wires from the tension device turns alternately over and under the pins, a strand device rotatable on the axis, so that the wires are twisted to form a strand, and a take-up device to take up the strand.
Abstract:
A steel cord for reinforcement of rubber products composed of two material wires of a diameter of 0.25 to 0.40 mm and a carbon content of 0.75 to 0.88 wt % which are entwisted at a twist pitch of 9.0 to 16.0 mm and in open structure, with improved fatigue resistance, flexibility and corrosion resistance.
Abstract:
A cord (50) comprises a single layer (52) made up of N helically wound metal filamentary elements (54) having an outer diameter D, the metal filamentary elements (54) defining an internal enclosure (58) of the cord of diameter Dv. Each metal filamentary element (54) has a diameter Df and a helix radius of curvature Rf. With this cord (50), D, Dv, Df and Rf being expressed in millimeters: 0.10≤Jr≤0.25, 9≤Rf/Df≤30, and 1.60≤Dv/Df≤3.20, where Jr=N/(π*(D−Df))×(Dh×Sin(π/N)−(Df/Cos(α×π/180))) and α is the helix angle, expressed in degrees, of each metal filamentary element (54).
Abstract:
A straightening apparatus for straightening wires comprises an entry-side roll arrangement and an exit-side roll arrangement, which are arranged so that a wire that is to be straightened, viewed in a transport direction, arrives between rolls of the entry-side roll arrangement in the straightening apparatus and, after passing between rolls of the exit-side roll arrangement, leaves the straightening apparatus, a distance between two rolls of the exit-side roll arrangement being settable. Furthermore, a pre-definable force F acts on the wire perpendicular to the transport direction between two rolls of the entry-side roll arrangement.