Abstract:
The process and the equipment for reducing emissions of pollutants in flue gases from furnace installations (1, 6) comprises a first furnace installation (1) operated with an air excess of, for example, 15%, and a second furnace installation (6) in which afterburning within the stoichiometric range is carried out, with consumption of the residual oxygen. The flue gases leaving the second furnace installation (6) no longer contain any free oxygen, but contain unburned hydrocarbons, carbon monoxide, nitrogen oxides, sulphur dioxide and sulphur trioxide as pollutants. The first-mentioned pollutants--unburned hydrocarbons, carbon monoxide and nitrogen oxides--are converted on a multi-functional catalyst into carbon dioxide, water vapor and nitrogen. The sulphur of the flue gas is oxidized by means of an oxidation catalyst (12) to sulphur trioxide which reacts with the water vapor contained in the flue gas to give sulphuric acid.
Abstract:
Nitrogen oxide emissions from burning a gas containing essentially no nitrogen such as natural gas are reduced by burning the gas simultaneously with an alcohol such as methanol.
Abstract:
A conventional pulverized coal-fired furnace is supplied fuel at two different levels. The raw coal is classified into a stream of relatively pure coal ground to conventional fineness for burners at the lower level, and a stream of very finely divided coal with a large, heavy mineral content for burners at the higher level.
Abstract:
Provided is a burner that includes: a tubular first outer cylinder (20); a diffuser (21) disposed inside the first outer cylinder (20) and having an inner circumferential surface, a diameter of which gradually increases in a first direction; a first gas nozzle (22) configured to feed a first gas to a radial outer region of the diffuser (21) in the first direction; a second gas nozzle (23) disposed adjacent to the first gas nozzle (22) in a circumferential direction of the first outer cylinder (20) and configured to feed a second gas to the radial outer region of the diffuser (21) in the first direction; and an ignition torch (24) configured to ignite at least one of the second gas and the first gas.
Abstract:
An apparatus for continuation of combustion with a combustion apparatus when the supply of the normal operating oxidant or normal operating fuel is disrupted, or temporally reduced. Air or oxygen enriched air or oxygen and a gaseous fuel or a liquid fuel or both a gaseous and liquid fuel are introduced into the combustion apparatus in place of the normal oxidant-fuel mixture to effect combustion and maintain the heating level in the furnace.A burner capable of firing in any one of the following nine firing modes: Air-Gas; Air-Oxy-Gas; Oxy-Gas; Air-Oil; Air-Oxy-Oil; Oxy-Oil; Air-Oil-Gas; Air-Oxy-Oil-Gas; Oxy-Oil-Gas.
Abstract:
A fuel flexible furnace, including a main combustion zone, a reburn zone downstream from the main combustion zone, and a delivery system operably coupled to supplies of biomass and coal and configured to deliver the biomass and the coal as ingredients of first and reburn fuels to the main combustion zone and the reburn zone, with each fuel including flexible quantities of the biomass and/or the coal. The flexible quantities are variable with the furnace in an operating condition.
Abstract:
A burner system and method of operating a burner for reduced NOx emissions. The burner system comprises a flame stabilizer, at least one fuel staging lance, an actuated valve, a temperature sensor and a controller. The amount of fuel to the flame stabilizer relative to the amount of fuel to the fuel staging lances is controlled depending on furnace temperature and/or furnace production rate.
Abstract:
A staged-coal injection procedure for coal-fired boilers used in power generation. The procedure includes the steps of combusting a first type of coal in a first zone of a furnace; and combusting a second type of coal in a second zone of the furnace. The second zone is at a position separate from the first zone.
Abstract:
During the melting of glass from charging material in furnaces with burners and regenerators for the recovery of waste heat, oxygen and primary fuel are introduced into the area around the flame roots under slightly sub-stoichiometric conditions to cover the heat requirement of the melting process. In order to further reduce the levels of NOx, and CO in the waste gases by re-burning or post oxidation, secondary fuel and, further downstream, additional air are introduced beyond the flame in order to reduce the level of NOx, in or above the checkerwork by means of the secondary fuel and to carry out re-burning or post oxidation downstream by means of the supply of air, so that ultimately approximately stoichiometric combustion takes place. Before the waste gases enter a waste gas stack they are used to preheat the charging material in at least one raw material pre-heater. In order to ensure an almost total recovery of the energy content of the fuel and a continuous flow of the charging material, the temperature of the waste gases coming from the regenerators is measured in front of the entry of the at least one raw material pre-heater, and the quantity of the secondary fuel is regulated according to the temperatures measured.
Abstract:
A process is provided for combusting a low heating value fuel gas in a combustor to drive an associated gas turbine. A low heating value fuel gas feed is divided into a burner portion and a combustion chamber portion. The combustion chamber portion and a combustion air are conveyed into a mixing zone of the combustor to form an air/fuel mixture. The burner portion is conveyed into a flame zone of the combustor through a burner nozzle while a first portion of the air/fuel mixture is conveyed into the flame zone through a burner port adjacent to the burner nozzle. The burner portion and first portion of the air/fuel mixture are contacted in the flame zone to combust the portions and produce flame zone products. The flame zone products are conveyed into an oxidation zone of the combustor downstream of the flame zone while a second portion of the air/fuel mixture is also conveyed into the oxidation zone. The second portion is combusted in the oxidation zone in the presence of the flame zone products to produce combustion products. The combustion products are conveyed into the associated gas turbine and drive the gas turbine.