Abstract:
A burner is arranged axially of a burner throat on a furnace wall and includes a nozzle body housed in a wind box and with a secondary air adjuster on a leading end of the nozzle body. The adjuster includes an end plate for defining together with a near-furnace side surface of the wind box a cylindrical space opened in an outer circumference thereof, a slide damper axially slidable for surrounding the cylindrical space, air vanes arranged at predetermined intervals and circumferentially of the cylindrical space for swirling a secondary air and drive means and for slide movement of the slide damper.
Abstract:
An annular injector is described. The injector includes a first bayonet assembly and a second bayonet assembly each including a terminal end and a tip end. The second bayonet assembly is configured to be concentrically coupled at least partially about the first bayonet assembly. An outer diameter of the first bayonet assembly and an inner diameter of the second bayonet assembly vary at the tip end to define a first substantially annular nozzle. The first bayonet assembly includes a maximum outer diameter that is greater than a minimum inner diameter of the second bayonet assembly and at least a portion of at least one of the first bayonet assembly and the second bayonet assembly extends from the tip end to the terminal end. The injector includes a third bayonet assembly configured to be concentrically coupled at least partially about the second bayonet assembly to define a second substantially annular nozzle.
Abstract:
A method of assembling an injection device for use in a reactor injector feed assembly includes extending the injection device at least partially into a cavity. The injection device includes a plurality of substantially concentric conduits coupled to a modular tip that includes a plurality of cooling channels and a plurality of substantially annular nozzles defined therein. The method also includes coupling at least one coolant distribution device in flow communication with the plurality of cooling channels to facilitate removing heat from an outer surface of the injection device.
Abstract:
In order to provide a rotary-furnace burner in which the quantity fraction of cost-effective particulate secondary fuels to be used as energy carriers can be increased and the configuration of the burner flame can be influenced, even during the operation of the burner, it is proposed, according to the invention, to arrange an expansion chamber open towards the burner mouth and having a widened cross section, as compared with the tube or individual tubes in the burner in front of the issue of the tube or tubes for blowing out the secondary fuels, and to make the axial length and the volume of the expansion chamber variable, during the operation of the burner, by means of the axial displacement of the secondary-fuel tubes, so that the particulate secondary fuel particles blown out at the burner mouth with a considerably reduced velocity do not fly past the burner flame, but, instead, burn out in the flame.
Abstract:
A method and system of feeding fuel into a gasifier are provided. The feed injector system includes a first injector port assembly including a plurality of annular channels substantially concentric about a longitudinal axis that define corresponding fluid flow paths that direct a flow of fluid substantially axially therethrough from a respective source to a reaction zone and a second injector port assembly including a flow port surrounded by a plurality of auxiliary ports spaced about a circumference of the flow port, the plurality of auxiliary ports communicatively coupled to a toroidal passage configured to receive a flow of fluid and channel the flow of fluid to the auxiliary ports such that the flow of fluid is discharged from the auxiliary ports having an axial flow component, a radially inward flow component, and a circumferential flow component.
Abstract:
A burner comprises a body, a nozzle, and at least one attachment element for removably attaching the nozzle to the body. The body defines an oxidant inlet, a feedstock inlet, a body outlet, and one or more passages for conveying the oxidant from the oxidant inlet to the body outlet and for conveying the gasification feedstock from the feedstock inlet to the body outlet. The nozzle defines a nozzle inlet and a nozzle outlet, wherein the nozzle inlet is configured to receive the oxidant and the gasification feedstock from the body outlet and the nozzle outlet is configured to discharge the oxidant and the gasification feedstock into the reaction chamber. The at least one attachment element removably attaches the nozzle to the body such that the nozzle inlet is in fluid flow communication with the body outlet when the nozzle is attached to the body.
Abstract:
A burner is arranged axially of a burner throat on a furnace wall and includes a nozzle body housed in a wind box and with a secondary air adjuster on a leading end of the nozzle body. The adjuster includes an end plate for defining together with a near-furnace side surface of the wind box a cylindrical space opened in an outer circumference thereof, a slide damper axially slidable for surrounding the cylindrical space, air vanes arranged at predetermined intervals and circumferentially of the cylindrical space for swirling a secondary air and drive means and for slide movement of the slide damper.
Abstract:
A coal nozzle assembly for a pulverized coal burner includes a diffuser. A flow conditioner also may be used with the assembly. The assembly conditions the coal/air flow before the coal/air flow is introduced to the furnace. The flow conditioner directs the coal into the diffuser where it is swirled to form a fuel rich outer ring disposed about an air rich inner portion before the fuel is delivered to the coal nozzle.
Abstract:
A solid fuel burner using a low oxygen concentration gas as a transporting gas of a low grade solid fuel such as brown coal or the like and a combustion method using the solid fuel burner are provided. The solid fuel burner comprises a means for accelerating ignition of the fuel and a means for preventing slugging caused by combustion ash from occurring. Mixing of fuel and air inside a fuel nozzle 11 is accelerated by that an additional air nozzle 12 and a separator 35 for separating a flow passage are arranged in the fuel nozzle 11, and the exit of the additional air nozzle 12 is set at a position so as to overlap with the separator 35 when seeing from a direction perpendicular to a burner axis, and additional air is ejected in a direction nearly perpendicular to a flow direction of a fuel jet flowing through the fuel nozzle 11. An amount of air from the additional air nozzle 12 is varied corresponding to a combustion load. By increasing the amount of air from the additional air nozzle 12 at a low load operation, an oxygen concentration of a circulation flow 19 formed in a downstream portion outside the exit of the fuel nozzle 11 is increased to stably burn the fuel. By decreasing the amount of air from the additional air nozzle 12 at a high load operation, a flame is formed at a position distant from the fuel nozzle 11 to suppress radiant heat received by structures of the solid fuel burner and walls of the furnace.
Abstract:
A burner for burning fine coal powder comprising: a fine coal powder nozzle 10 for injecting a mixture of the fine coal powder and air; and air nozzles 11, 12 for injecting air: wherein the sufficient amount of air for complete combustion of the fine coal powder is supplied from the air nozzles; a reducing flame at a high temperature is formed by consuming oxygen rapidly with forming a flame at a high temperature by igniting the fine coal powder rapidly in the vicinity of the outlet of the burner; and an oxidizing flame having an uniform distribution of gas composition in radial direction to the central axis of the burner is formed by mixing the air injected from the air nozzle in the downstream of the reducing flame at the high temperature.