Abstract:
A vacuum adiabatic body, a method for fabricating a vacuum adiabatic body, a porous substance package, and a refrigerator including a vacuum adiabatic body and a porous substance package are provided. The vacuum adiabatic body may include a first plate, a second plate, a seal, a support, a heat resistance device, and an exhaust port. The support may include a porous substance and a film made of a resin material, the film configured to accommodate the porous substance therein. Accordingly, it may be possible to provide a vacuum adiabatic body through an inexpensive process.
Abstract:
An oil holding tank (40) is communicated to the case (10c) of the compressor (10). Part of the refrigerant discharged from the compressor (10) is introduced into the oil holding tank (40) so that the lubrication oil (L) is allowed to flow out from the oil holding tank (40) and the lubrication oil (L) which flows out is allowed to return to the case (10c). The presence of the lubrication oil (L) is detected from a comparison between the temperature (TK1) of the refrigerant introduced from the compressor (10) to the oil holding tank (40) and the temperature (TK2) of the lubrication oil (4) flowing out from the oil holding tank (40). On the basis of the result of the detection, it is judged whether or not the amount of the lubrication oil (L) in the case (10c) is appropriate.
Abstract:
An insulating vacuum panel comprising a microporous, open cell silica foam or a precipitated silica insulating support member enclosed within a sealed, flexible polymeric envelope, the envelope comprising a heat-sealable barrier film comprising a multiple layer laminate containing at least one polyethylene terephthalate layer and at least two barrier layers selected from the group consisting of polyvinylidene chloride, polyvinyl alcohol, polyamide, polyolefin and aluminum foil, or a biaxially oriented liquid crystal barrier film which minimizes permeation of gas and liquid through the barrier film, the panel having an R value per inch of at least about 20 wherein the enclosed insulated vacuum panel is useful as insulation to maintain an essentially constant temperature in a closed structure, a system for storing and transporting temperature-sensitive materials wherein the insulated vacuum panels are employed to provide and maintain a constant temperature in the system, a method for manufacturing the insulating vacuum panel, and a system for storing and transporting temperature-sensitive materials are described.
Abstract:
Bei einem Gerät mit thermisch von der Umgebung weitestgehend isoliertem Innenraum, insbesondere bei einem Kühl- und/oder Gefriergerät unter Verwendung von pulver-vakuumisolierten Wandungen sind die Gehäusewandungen gebildet aus einem festen Verbund aus einem Außenbehälter (2), einem Innenbehälter (5) und einer dagegen durch gasdichte und gasdicht verbundene Folienschichten abgedichteten, gasevakuierten, zusammenhängenden Pulvereinbettung (3,3').
Abstract:
Precipitated silica is mixed with a fly ash material and is employed as an insulating material having a low thermal conductivity. The mixture of precipitated silica and fly ash material is dried, compressed, placed in an evacuable pouch, and evacuated. The resulting board-like insulation configuration is used directly as insulation. The board-like material which is produced may be used as insulation in household refrigerators and freezers by placing it in an insulation space between the inner liner and the outer case and encapsulating the board-like material with a foamed insulating material.
Abstract:
An insulated cabinet structure includes an inner liner having a plurality of walls defining a refrigerator compartment. An external wrapper includes a plurality of walls defining a refrigerator compartment receiving area. An insulation gap is formed between the walls of the inner liner and the walls of the external wrapper when the inner liner is received in the external wrapper. An insulation member is positioned within the insulation gap and includes a renewable resource component comprising about 10% to about 90% by weight of the insulation member.
Abstract:
Disclosed herein are a vacuum insulation panel having an improved structure which may improve durability by minimizing a folding process, and a refrigerator including the same. The vacuum insulation panel (100) includes a core material (110), a first outer skin material that is arranged to form an outer surface of the core material, a second outer skin material that has a gap and forms the other outer surface of the core material, and is disposed to face the first outer skin material, and a third outer skin material (310, 320, 330) that is provided to connect the first outer skin material and the second outer skin material and to be variable in accordance with the gap.
Abstract:
The insulated unit (1) of the present invention comprises an inner liner (9), an outer liner (8), an insulation space (10) between the inner liner (9) and the outer liner (8), an insulating material (2) filling the inner space (10). The inner liner (9) and the outer liner (8) of the insulated unit (1) are formed by a composite sheet (11) including one or more plastic sheets (3) and one or more film materials (7) that is formed by metal and thin plastic layers.