Abstract:
The present subject matter relates to methods of high-speed analysis of product samples during production of the product. Light is directed to a portion of a product under analysis and reflected from or transmitted through the product toward optical detectors. Signals from the optical detectors are compared to determine characteristics of the product under analysis. Temperature within the monitoring system may be monitored in order to provide compensation for the signals produced by the optical detectors. The products under analysis may be stationary, moved by an inspection point by conveyor or other means, or may be contained within a container, the container including a window portion through which the product illuminating light may pass.
Abstract:
An optical analysis system and method for determining information carried by light include a multivariate optical element disposed in the system to receive a source light from an illumination source; filtering the source light through a spectral element in the optical element analysis system; reflecting the filtered light through an inner region of a cavity in a first direction of a sample to be measured, the cavity defining a second region disposed about the inner region; focusing the reflected light proximate the sample; reflecting the focused light from the sample through the second region in a second direction of a beamsplitter, the light being reflected from the sample carrying data from the sample; splitting the sample carrying light with the beamsplitter into a first light and a second light; optically filtering the data of the first light with the multivariate optical element into an orthogonal component; directing the first light filtered by the multivariate optical element onto a first photodetector; directing the second light onto a second photodetector; and comparing the orthogonal component to information present in the second light to determine a property of the sample.
Abstract:
A method and apparatus is disclosed for using below deep ultra-violet (DUV) wavelength reflectometry for measuring properties of diffracting and/or scattering structures on semiconductor work-pieces is disclosed. The system can use polarized light in any incidence configuration, but one technique disclosed herein advantageously uses un-polarized light in a normal incidence configuration. The system thus provides enhanced optical measurement capabilities using below deep ultra-violet (DUV) radiation, while maintaining a small optical module that is easily integrated into other process tools. A further refinement utilizes an r-θ stage to further reduce the footprint.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
A spectroscope designed to utilize an adaptive optical element such as a micro mirror array (MMA) and two distinct light channels and detectors. The devices can provide for real-time and near real-time scaling and normalization of signals.
Abstract:
Method and apparatus for detecting, by absorption spectroscopy, an isotopic ratio of a sample, by passing first and second laser beams of different frequencies through the sample. Two IR absorption cells are used, a first containing a reference gas of known isotopic ratio and the second containing a sample of unknown isotopic ratio. An interlacer or reflective chopper may be used so that as the laser frequencies are scanned the absorption of the sample cell and the reference cell are detected alternately. This ensures that the apparatus is continuously calibrated and rejects the baseline noise when phase sensitive detection is used.
Abstract:
Disclosed are photometric methods and devices for determining optical pathlength of liquid samples containing analytes dissolved or suspended in a solvent. The methods and devices rely on determining a relationship between the light absorption properties of the solvent and the optical pathlength of liquid samples containing the solvent. This relationship is used to establish the optical pathlength for samples containing an unknown concentration of analyte but having similar solvent composition. Further disclosed are methods and devices for determining the concentration of analyte in such samples where both the optical pathlength and the concentration of analyte are unknown. The methods and devices rely on separately determining, at different wavelengths of light, light absorption by the solvent and light absorption by the analyte. Light absorption by the analyte, together with the optical pathlength so determined, is used to calculate the concentration of the analyte. Devices for carrying out the methods particularly advantageously include vertical-beam photometers containing samples disposed within the wells of multi-assay plates, wherein the photometer is able to monitor light absorption of each sample at multiple wavelengths, including in the visible or UV-visible region of the spectrum, as well as in the near-infrared region of the electromagnetic spectrum Novel photometer devices are described which automatically determine the concentration of analytes in such multi-assay plates directly without employing a standard curve.
Abstract:
The invention relates to a spectrometer arrangement (10) comprising a spectrometer (14) for producing a spectrum of a first wavelength range of radiation from a radiation source on a detector (42). Said arrangement also comprises: an Echelle grating (36) for the spectral decomposition of the radiation penetrating the spectrometer arrangement (10) in a main dispersion direction (46); a dispersing element (34) for separating the degrees by means of spectral decomposition of the radiation in a transversal dispersion direction (48) which forms an angle with the main dispersion direction of the Echelle grating (36), in such a way that a two-dimensional spectrum (50) can be produced with a plurality of separated degrees (52); an imaging optical element (24, 38) for imaging the radiation penetrating through an inlet gap (20) into the spectrometer arrangement (10), in an image plane (40); and a surface detector (42) comprising a two dimensional arrangement of a plurality of detector elements in the image plane (40). The inventive arrangement is characterised in that another spectrometer (12) comprising at least one other dispersing element (64) and another imaging optical element (60,66) is provided in order to produce a spectrum (68) of a second wavelength range of radiation, which is different from the first wavelength range, from a radiation source on the same detector (42). The spectra can be spatially or temporally separated on the detector.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
Mirror elements are selectively interposable in the beam paths in a dual aperture microspectrometer system to selectively bypass the aperture element in transmission or reflection modes to increase optical throughput and field of view. The system may be operated in a dual aperture transmission mode or reflection mode and in modes in which the aperture is bypassed before or after the infrared beam reaches the sample. The system may be operated to bypass the aperture both before and after the sample, which may be utilized with an array detector having multiple detector elements in which an image of the sample is formed on the array detector.