Abstract:
Various implementations of optical computing devices are described herein which include a “tuning fork” probe, “spark plug” probe, “grooved tubular” and “modular” type implementation.
Abstract:
Various implementations of optical computing devices are described herein which include a “tuning fork” probe, “spark plug” probe, “grooved tubular” and “modular” type implementation.
Abstract:
A method of referencing an imaged object includes, among other things, obtaining a series of images, observing key characteristics of the object in each of the series of images, associating the observed key characteristics with the object; and assigning a unique identifier to the object based upon the associated key characteristics. The series of images includes spectral and spatial imagery. Some of the key characteristics are in the spectral imagery and some of the key characteristics are in the spatial imagery.
Abstract:
A system and method of characterizing a color variation of a surface includes a device having a light source and a plurality of sensors positioned at respective viewing angles. An algorithm is stored on and executable by a controller to cause the controller to direct a beam of light at the measurement location with the light source and measure the light leaving the measurement location with the sensors at a plurality of azimuth angles to obtain respective measured color values. The controller is configured to define a color vector function F(θ, φ) to represent the color variation of the surface. The controller is configured to determine the color vector function F(θ, φ) based at least partially on the respective measured color values. The system allows for a representation of color space of a surface at any azimuth and viewing angle.
Abstract:
A system for processing a multiband image, including digital computer memory for storing a multiband image having multiple bands of image data; and processing circuitry for processing the multiband image, wherein the processing circuitry (a) determines pixel locations in the bands of the multiband image having values above the band-specific white value threshold for each of the bands of the multiband image, (b) determines a band-specific correction factor for each of plural bands of the multiband image based on the determined pixel locations, and (c) applies the corresponding band-specific correction factor to the respective plural bands of the multiband image to produce a corrected image.
Abstract:
A system for processing a multiband image, including digital computer memory for storing a multiband image having multiple bands of image data; and processing circuitry for processing the multiband image, wherein the processing circuitry (a) determines pixel locations in the bands of the multiband image having values above the band-specific white value threshold for each of the bands of the multiband image, (b) determines a band-specific correction factor for each of plural bands of the multiband image based on the determined pixel locations, and (c) applies the corresponding band-specific correction factor to the respective plural bands of the multiband image to produce a corrected image.
Abstract:
An optical processor includes a light source (20), a grating device (23), a first lens (24), a reflector (25), a second lens (26), an array of mirror cells (28), a color wheel (29), and a third lens (30). The light source is for generating a number of light beams. The grating device is for reflecting and dispersing the generated light beams. The first lens is for imaging the reflected and dispersed light beams. The reflector is for reflecting the imaged light beams. The second lens is for correcting any aberration of the reflected light beams. The array of mirror cells is for reflecting the light beams received from the second lens. The color wheel is for coloring the reflected light beams. The third lens is for projecting the colored light beams onto a display.
Abstract:
An apparatus, system and method are provided for composing an image at a selectable wavelength, wavelengths or bandwidth. Light passing through an entrance slit is dispersed into a spectrum and recorded. In an embodiment, spectral images corresponding to respective portions of an object are generated. Image data corresponding to a selected wavelength, wavelengths or bandwidth is extracted from the spectral images and compiled into an image of the object. In an embodiment, user optics are provided which allow a user to align the object with the entrance slit or to focus the light from the object onto the entrance slit.