Abstract:
An object of the present invention is to provide an optical film which has thermochromic properties that a near-infrared light shielding ratio can be controlled according to temperature environment and which has a low haze and has excellent crack resistance and adhesiveness even when the optical film is used over a long period of time, and a method for producing the same. In the optical film, an optical functional layer has a sea-island structure including a sea region formed by a binder resin and island regions formed by vanadium-dioxide-containing fine particles, a number average particle diameter of total particles including primary particles and secondary particles of the vanadium-dioxide-containing fine particles is 200 nm or less, an average value of a closest wall-to-wall distance between the island regions is in a range of 1 to 1,000 nm, and the number of the island regions having the closest wall-to-wall distance of 1,100 nm or more is 10% by number or less with respect to the total number of the island regions.
Abstract:
A polymer-dispersed liquid crystal light-regulation structure comprises a liquid crystal light-regulation layer, a first anti-infrared light-permeable conductive layer, a second anti-infrared light-permeable conductive layer, a first light-permeable substrate, and a second light-permeable substrate. The first and second anti-infrared light-permeable conductive layers are respectively disposed on two sides of the liquid crystal light-regulation layer. The first and second light-permeable substrates are respectively disposed on sides of the first and second anti-infrared light-permeable conductive layers, which are far away from the liquid crystal light-regulation layer. The first and second anti-infrared light-permeable conductive layers not only retard infrared light from entering the building and lower the indoor temperature but also function as electric-conduction structures electrically energized to vary the light transmittance of the liquid crystal light-regulation layer, whereby fewer layers are used in the present invention, and whereby is reduced the overall thickness of the present invention.
Abstract:
A night vision imaging system (NVIS) compatible liquid crystal display (LCD) includes a backlight and an LCD panel. The LCD panel includes a color filter including a plurality of colored pixels. Each of the colored pixels in the plurality of colored pixels incorporates a near infrared (NIR) filter, capable of substantially blocking emissions from the backlight, including NIR emission between 650 nm and 930 nm, while maintaining high transmission of bands of visible light for producing a full color visual image.
Abstract:
In one embodiment, A MEMS sensor assembly includes a substrate, a first sensor supported by the substrate and including a first absorber spaced apart from the substrate, and a second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate.
Abstract:
A display apparatus includes a light generating part and a display panel. The display panel includes a first substrate, and a second substrate facing the first substrate. The second substrate includes a plurality of pixel units including a sensor sensing the light generated from the light generating part and reflected from an object disposed on the display panel, and a pixel. The display panel further includes a light blocking member which is positioned at a position corresponding to an area in which the sensor is disposed and prevents the light generated from the light generating part from being directly incident to the sensor. The light blocking member is disposed on the first substrate.
Abstract:
Tungsten trioxide (WO3) nanoparticles are synthesized via a sol-gel route using metallic tungsten as precursor and printed on a flexible electrode using inkjet printing in order to build solid-state electrochromic cells. A method for separate control of different spectral regions of the electrochromic device (near infrared and visible) is disclosed.
Abstract:
A heat dissipation structure for an indooroutdoor LCD signboard, which includes an LCD panel and a backlight unit. The heat dissipation structure includes a frame supporting the LCD panel, a cover coupled to a rear surface of the frame, the cover supporting the backlight unit, a heatblocking means provided on the frame to prevent heat generated by the backlight unit from being transferred forward, and a heatdissipating means provided on the cover to dissipate the heat generated by the backlight unit backward. The structure can efficiently perform heat dissipation function irrespective of installation location, such as an indoor or outdoor location, thereby increasing endurance while maintaining the reliability of operation.
Abstract:
At least one embodiment of the present invention provides a display device that is capable of suppressing reflection and temperature increases in a display panel so that a favorable display characteristic is obtained even during outdoor use, and that can be realized by a simple configuration. In at least one example embodiment, the present invention is a display device including: a display panel; and a protective plate disposed further toward a viewing surface side than the display panel, wherein a low reflection film formed with a nanostructure is provided on a main surface of the protective plate on the viewing surface side, and a circularly polarizing plate and an infrared ray shielding film are disposed in sequence from the protective plate side toward the display panel side on a main surface of the protective plate on a side for disposing the display panel.
Abstract:
Methods and apparatus for providing a tunable absorption-emission band in a wavelength selective device are disclosed. A device for selectively absorbing incident electromagnetic radiation includes an electrically conductive surface layer including an arrangement of multiple surface elements. The surface layer is disposed at a nonzero height above a continuous electrically conductive layer. An electrically isolating intermediate layer defines a first surface that is in communication with the electrically conductive surface layer. The continuous electrically conductive backing layer is provided in communication with a second surface of the electrically isolating intermediate layer. When combined with an infrared source, the wavelength selective device emits infrared radiation in at least one narrow band determined by a resonance of the device. In some embodiments, the device includes a control feature that allows the resonance to be selectively modified. The device has broad applications including gas detection devices and infrared imaging.
Abstract:
A diffuser is provided in an illumination system, where the diffuser is capable of blocking significant amounts of infrared (IR) and/or ultraviolet (UV) radiation. In certain example embodiments of this invention, the diffuser includes a glass substrate which supports an IR/UV coating(s) that blocks significant amounts of IR and/or UV radiation thereby reducing the amount of IR and/or UV radiation which can makes its way through the diffuser. In certain example embodiments, the coating may include particulate in a frit matrix so that the coating may both diffuse visible light and perform IR and/or UV blocking.