Abstract:
A differential TWE MZM includes a differential driver, first and second capacitors, and first and second terminations. The differential driver includes a first differential output and a second differential output that collectively form a differential pair. The first differential output is DC coupled to a cathode of a first arm optical phase shifter of a TWE MZM. The second differential output is DC coupled to a cathode of a second arm optical phase shifter of the TWE MZM. The first capacitor AC couples the second differential output to an anode of the first arm optical phase shifter. The second capacitor AC couples the first differential output to an anode of the second arm optical phase shifter. The first and second terminations are coupled to the cathode and the anode of, respectively, the first or second arm optical phase shifter.
Abstract:
A Mach-Zehnder modulator arrangement includes at least one electro-optic Mach-Zehnder modulator having a first optical waveguide forming a first modulator arm and a second optical waveguide forming a second modulator arm. A travelling wave electrode arrangement includes first waveguide electrodes for applying a voltage across the first optical waveguide and second waveguide electrodes for applying a voltage across the second optical waveguide. The first waveguide electrodes are capacitively coupled to the second waveguide electrodes. A driver unit supplies an alternating voltage to the travelling wave electrode arrangement. The driver unit includes a first output port coupled to the first waveguide electrodes and a second output port coupled to the second waveguide electrodes. The driver unit supplies a first varying signal to the first waveguide electrodes via the first output port and a second varying signal to the second waveguide electrodes via the second output port.
Abstract:
A Mach-Zehnder (MZ) modulator made of semiconductor material and a method to drive the MZ-modulator are disclosed. The MZ-modulator includes a pair of arms to vary the phase of the optical beam propagating therein. One of the arms further provides the phase presetter that varies the phase of the optical beam by π. The arms are driven by modulation signals complementary to each other but with the DC bias equal to each other.
Abstract:
An electro-optic Mach-Zehnder modulator arrangement includes first and second optical waveguides forming, respectively, first and second arms of the Mach-Zehnder modulator. An electrode arrangement includes a first waveguide electrode output port coupled to the first waveguide electrodes a second waveguide electrode arranged on top of a capacitive segment of the first and the second optical waveguides, respectively, such that a voltage can be applied across the capacitive segments of the first and second optical waveguide. At least one driver unit supplies a voltage to the electrode arrangement. The driver unit includes first and second output ports coupled, respectively, to the first and second waveguide electrodes. The driver unit supplies first and second varying signals to the first and second waveguide electrodes via the first and second output ports, respectively. A non-grounded conductive region connects the capacitive segments of the first and second optical waveguides to each other.
Abstract:
An interferometer used for modulating an optical signal with an electrical signal is described, where the optical signal can be subsequently detected so as to sample and digitize the electrical signal. Nonlinear optical elements can be located inside the interferometer to reduce the minimum detectable electrical input signal size. The interferometer can contain more than two arms to improve the tolerable dynamic range of the electrical signal. In some cases some outputs of the interferometer are dependent on the electrical input frequency while others have minimal frequency dependence, thereby allowing the frequency of the input electrical signal to be measured more easily. Ideally the modulator operates in a push-pull mode with a single electrode for the input electrical signal. Such a modulator can be constructed by using appropriate optical delay elements.
Abstract:
An optical modulator includes a package 2 that accommodates therein a first substrate and a second substrate different from the first substrate, and outside the package, a flexible circuit board. The first substrate has plural optical modulating units disposed thereon in parallel and each including a Mach-Zehnder optical waveguide. Plural first signal line paths corresponding to the optical modulating units are disposed on the second substrate. Plural second signal line paths corresponding to the optical modulating units are disposed on the flexible circuit board. Electrical lengths of the second signal line paths are different from one another. Electrical lengths of signal paths that span from input ends of the second signal line paths corresponding to the optical modulating units to base points on signal electrodes, via the first signal line paths, are equal to one another.
Abstract:
In a nest MZI modulator in which each arm includes a child MZI, the power consumption is reduced. The hybrid integrated-type nest MZI modulator of the embodiment 1a is configured so that, instead of placing a relative phase adjusting section in a parent MZI, a bias electrode Bias 90° in which an electric field is applied in the same direction to the polarization direction in both of the upper and lower arms is placed in each child MZI (see FIG. 4B). The bias electrode Bias 90° provided in each child MZI constitute the entirety of a relative phase adjusting section. The optical signals are subjected to a phase change after the output from the child MZI (see FIG. 1A), because such relative phase adjusting section can subject the optical signals of the upper and lower arms of the child MZI to a shift change in the same direction, respectively.
Abstract:
A high speed optical switch may include a plurality of pairs each having a length Lπ that may be connected in series. All switching may be accomplished in the high speed optical switch by discharging one arm in a pair (e.g. a single Lπ) at a time. Lπ may refer to a guide length used to induce a relative π phase shift. Each of the plurality of pairs may have two arms with both arms being initially charged. If both arms in any give pair have the same state, (e.g. either charged, uncharged, or charging) a ‘1’ may be transmitted through that pair. If the arms are in opposite states, (e.g. charged or uncharged) a π phase shift may be produced and a ‘0’ may be transmitted through that pair. For example, a first pair in the series may be recharged while other pairs are using in switching.
Abstract:
A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which then transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index
Abstract:
The present invention relates to an apparatus and method for performing optical Differential Phase Shift Keying (DPSK) modulation, which transmits a phase difference between adjacent bits as information. The electrically band-limited optical DPSK modulating apparatus includes a light source, a Non-Return-to-Zero (NRZ) signal generator, a pre-coder, an electrical low pass filter, and a phase modulator. The NRZ signal generator generates a NRZ signal. The pre-coder codes the NRZ signal generated by the NRZ signal generator into a differential signal. The low pass “filter electrically limits a bandwidth of the differential signal obtained through the pre-coder. The phase modulator modulates an optical signal input from the light source into a DPSK signal using the differential signal having the bandwidth electrically limited by the low pass filter.