Abstract:
A line-imaging lens condenses a light beam from a light-source unit in one direction to form a line image. An optical deflecting unit deflects the light beam passing through the line-imaging lens. An imaging optical unit images the light beam deflected by the optical deflecting unit in a spot shape on a scanning surface to be scanned. An adjusting unit adjusts a position of irradiation of the light beam from the light-source unit on the optical deflecting unit.
Abstract:
A technique is provided which can improve optical characteristics by suppressing the occurrence of an error in attachment of a rotary deflector that deflects a light flux from a light source and scans it in a main scanning direction. There are provided a rotary deflector that deflects the light flux from the light source and scans it in the main scanning direction, an imaging optical system that images the light flux scanned by the rotary deflector onto a specified scanning object, a support part that supports the rotary deflector rotatably, and a positioning part that comes in contact with the support part at plural contact positions and positions the support part, in which a shortest distance between the plural contact positions in an optical axis direction of the imaging optical system is longer than a shortest distance between the plural contact positions in the main scanning direction.
Abstract:
A multi-beam luminous source apparatus, an optical scanning apparatus, and an image formation apparatus are disclosed. The multi-beam luminous source includes a first member for supporting a coupling lens and a second member for supporting a control substrate that supports a Vertical Cavity Surface Emitting Laser (VCSEL). The first member and the second member are joined with a screw at a reference plane that perpendicularly intersects an optical axis of the coupling lens. The second member includes a base member A for supporting the control substrate and a base member B that includes a branch mirror, a convergent lens, and an optical detection sensor.
Abstract:
Deformation of a second optical carriage (B) due to heat is large on a (C) side where an inverter (31) is attached and small on a (D) side. A mirror supporting portion inside the second optical carriage (B) supports the mirror at one point on the (C) side and at two points on the (D) side. An angle of the reflecting mirror (8) depends on two protrusions on the (D) side where thermal deformation is small, and the mirror is supported at one point on the (C) side where thermal deformation is large. Thus, even if an angle of the mirror supporting portion (C) changes, the angle of the reflecting mirror (8) is not affected. Therefore, a change in the angle of the reflecting mirror (8) can be controlled to be small when temperature of the second optical carriage (B) rises during a reading operation, and decrease in reading accuracy due to thermal deformation of the second optical carriage (B) can be suppressed.
Abstract:
An image reading apparatus includes a scanning unit disposed in a box-shaped casing for scanning a stationary original in a sub-scanning direction to read the original; a supporting unit for supporting one side of the scanning unit in a main scanning direction and guiding the one side of the scanning unit in the sub-scanning direction; a driving source for moving the scanning unit in the sub-scanning direction; a drive transmitting unit for transmitting a drive of the driving source to the scanning unit; and first and second reinforcing plates attached to the casing along the sub-scanning direction for reinforcing the casing. The first reinforcing plate forms a guide unit for supporting the other side of the scanning unit in the main scanning direction and guiding the scanning unit in the sub-scanning direction. The driving source and the drive transmitting unit are fixed to the second reinforcing unit.
Abstract:
The present invention provides an image scanning module including a first unit, a second unit, and a third unit. The first unit having a light source is used for retrieving a first image. The second unit is used for generating a second image by focusing the first image. The third unit is used for generating an electric signal responsive to the second image. The first unit, the second unit, and the third unit are modules discrete from each other.
Abstract:
PURPOSE: An image reading apparatus and an image forming apparatus for respectively exchanging for a light guide are provided to prevent the contact of the light emitting unit when the supporting member fixing the lighting-emitting area is attached in casing, the image reading apparatus. CONSTITUTION: A point-shaped light source is arranged in a row list in a light emitting unit(61). The light emitting unit is attached to the first side of a substrate. The supporting member supports a projecting part projecting the location of the lighting-emitting area in the second side of substrate. The supporting member is attached to a casing. A light guide member is contiguous to the lighting-emitting area. The light guide is attached to the casing. The light guide guides the light of the lighting-emitting area on a read surface.