Abstract:
An image sensor module includes a light source unit that emits a linear light beam elongate in a primary scanning direction to an object to be read, and a lens unit including an incidence surface and an output surface oriented opposite to each other. The lens unit is configured to receive light from the object through the incidence surface and output the light through the output surface. The module also includes a sensor IC that receives the light outputted from the output surface, a housing that holds the light source unit and the lens unit, and a support member that supports the lens unit such that the incidence surface is located more distant from the sensor IC than the output surface in a secondary scanning direction. The support member includes a reflection surface that reflects the light from the object toward the incidence surface.
Abstract:
An image reading device and a method for manufacturing the same are provided, where the image reading device is capable of being assembled more efficiently. The image reading device includes: an optical part, extending long in a direction; a case, having an accommodating portion for accommodating the optical part; and a light receiving component, accommodated in the case. The optical part is fixed in the accommodating portion through a first adhesive and a second adhesive with hardening time longer than that of the first adhesive.
Abstract:
A sensor IC of the present invention is provided with plurality of light receiving portions arranged in a row along a primary scanning direction and including a first light receiving portion for receiving light of a first wavelength, a second light receiving portion for receiving light of a second wavelength different from the first wavelength, and a third light receiving portion for receiving light of a third wavelength different from the first wavelength and the second wavelength. The sensor IC further includes a control circuit that outputs a first electric signal corresponding to light of the first wavelength received by the first light receiving portion, a second electric signal corresponding to light of the second wavelength received by the second light receiving portion, and a third electric signal corresponding to light of the third wavelength received by the third light receiving portion.
Abstract:
An LED module includes first through third LED chips and two Zener diodes for preventing excessive voltage application to the first and the second LED chips. A first lead includes a mount portion on which the first through third LED chips and the two Zener diodes are mounted. A resin package covers part of the first lead and includes an opening for exposing the three LED chips and two Zener diodes. A single insulating layer bonds the first and second LED chips to the first lead. A single conductive layer bonds the third LED chip and two Zener diodes to the first lead. The Zener diodes are arranged between the first, second LED chips and the third LED chip.
Abstract:
An image sensor module includes a light source, a light guide elongated in a first direction, a reflector covering the guide, and a light receiver for linear light reflected on a reading target in a second direction perpendicular to the first direction. The guide includes an incident surface for entering light from the light source, a reflecting portion for reflecting, in a direction crossing the first direction, the light from the incident surface, and a surface for emitting light from the reflecting portion as linear light elongated in the first direction. The reflector has an opening and an inclined surface. The opening extends in the first direction to pass the light reflected by the target. The inclined surface, at an end of the opening in the first direction, has a normal which is non-parallel to the first direction and a third direction perpendicular to the first and second directions.
Abstract:
In an illumination device, a light guide is adapted to emit the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to the area, whereby attained are compactness, a low cost, a low electric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. An image reading device and an information processing apparatus can also be equipped with the above-mentioned illumination device.
Abstract:
A contact image sensor includes a light sensitive optical detector and a light source mounted on a mounting surface. A light guide is located under the light source and is oriented to direct a light path from the light source to a scan line region under the light sensitive optical detector.
Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
There is disclosed a light guide for guiding light from a light source in a longitudinal direction and radiating the light to illuminate an object to be illuminated, which includes a diffuser for diffusing the light from the light source along the longitudinal direction of the light guide, and a radiator for radiating the light diffused by the diffuser in a predetermined direction. By arranging the diffuser and the radiator so that a normal line passing through the center of the width of the diffuser is different from the predetermined direction at least in the vicinity of the light source when viewed in the longitudinal direction of the light guide, the illuminance distribution of the longitudinal direction of the light guide is uniformed.
Abstract:
An image reading apparatus is provided for reading out images printed on a document. The apparatus includes a casing elongated in the primary scanning direction and a transparent cover supported by the casing. In image-reading operation, the cover is held in sliding contact with a document at an image reading line. The apparatus further includes an insulating substrate attached to the casing, light sources for illuminating the image reading line, light sensors for receiving reflected light coming from the image reading line and a luminosity adjuster supported by the casing for equalizing luminosity along the image reading line.