Abstract:
Method for treating a textile under industrial and institutional fabric care conditions to impart softness within a single wash and/or rinse cycle are disclosed. More particularly, the present invention relates to a combination of a liquid or solid fabric conditioning composition and a softening booster for treating a textile to impart softness within a single wash and/or rinse cycle. Compositions employed therein are further disclosed.
Abstract:
A system and method are provided for dry cleaning articles utilizing a siloxane solvent. The system (5) includes a cleaning basket (10) for receiving articles therein and one or more tanks (14, 16) for containing a siloxane solvent. Coupled between the tank and the cleaning basket is a pump (12) for immersing the articles in the cleaning basket with the siloxane solvent. Also included is a still (24) for distilling the dirty siloxane solvent to recover the pure siloxane solvent. A condenser (26) is coupled to the cleaning basket and/or the still for recovering condensed vapors. For decanting any water in the siloxane solvent received from the condenser, a separator (28) is coupled to the condenser. A fan (32) is coupled to the cleaning basket for circulating air past the condenser, then the heater coils (34) and into the cleaning basket for drying and cooling the articles.
Abstract:
A method for dry-cleaning articles such as fabrics and clothing in carbon dioxide while concurrently applying a sizing agent to the articles comprises contacting an article to be cleaned with a liquid dry cleaning composition for a time sufficient to clean the fabric. The liquid dry-cleaning composition comprises a mixture of carbon dioxide, a surfactant, a sizing agent. An organic co-solvent is preferably included. After the contacting step, the article is separated from the liquid dry cleaning composition. The method is preferably carried out at ambient temperature. Preferred sizing agents are low molecular weight hydrocarbon resins. The surfactant is preferably one that does not contain a CO2-philic group. The organic co-solvent is preferably an alkane and has a flash point above 140 DEG F.
Abstract:
A method and an apparatus for cleaning and recycling solvents with an apparatus having pressure chambers (102) and a conduit in fluid communication with an outflow valve (116) of the chambers and an inflow valve (108) of the pressure chambers.
Abstract:
a method for drying lipophilic fluid-containing fabric articles comprises one or more of the following steps: (a) adding a high vapor pressure co-solvent to the lipophilic fluid prior to contacting the fabric articles with the lipophilic fluid, (b) pre-heating the lipophilic fluid prior to contact with the fabric articles, (C) pre-heating
Abstract:
A cleaning system that utilizes an organic cleaning solvent and pressurized fluid solvent is disclosed. The system has no conventional evaporative hot air drying cycle. Instead, the system utilizes the solubility of the organic solvent in pressurized fluid solvent as well as the physical properties of pressurized fluid solvent. After an organic solvent cleaning cycle, the solvent is extracted from the textiles at high speed in a rotating drum (112, 122) in the same way conventional solvents are extracted from textiles in conventional evaporative hot air dry cleaning machines. Instead of proceeding to a conventional drying cycle, the extracted textiles are then immersed in pressurized fluid solvent to extract the residual organic solvent from the textiles. This is possible because the organic solvent is soluble in pressurized fluid solvent. After the textiles are immersed in pressurized fluid solvent, pressurized fluid solvent is pumped from the drum (112, 122). Finally, the drum is de-pressurized to atmospheric pressure to evaporate any remaining pressurized fluid solvent, yielding clean, solvent free textiles. The organic solvent is preferably selected from terpenes, halohydrocarbons, certain glycol ethers, polyols, ethers, esters of glycol ethers, esters of fatty acids and other long chain carboxylic acids, fatty alcohols and other long-chain alcohols, short-chain alcohols, polar aprotic solvents, siloxanes, hydrofluoroethers, dibasic esters, and aliphatic hydrocarbons solvents or similar solvents or mixtures of such solvents and the pressurized fluid solvent is preferably densified carbon dioxide.
Abstract:
PROBLEM TO BE SOLVED: To provide a system and a method for dry-cleaning an article by using a siloxane compound. SOLUTION: This system 5 includes a cleaning basket 10 for receiving the article inside and one or more tanks 14 and 16 for storing the siloxane compound. A pump 12 for soaking the article in the cleaning basket by a siloxane solvent, is connected between the tanks and the cleaning basket. A distiller 24 for distilling the dirty siloxane solvent, is included for recovering a pure siloxane solvent. A condenser 26 is connected to the cleaning basket and/or the distiller for recovering condensed steam. A separator 28 is connected to the condenser for transferring the whole moisture in the siloxane solvent received from the condenser. A fan 32 is connected to the cleaning basket for circulating air to the cleaning basket so as to dry and cool the article by the air passing through a heating coil 34. COPYRIGHT: (C)2005,JPO&NCIPI