Abstract:
An apparatus for measuring ear and forehead temperature, in which an accessory is added in a traditional infrared ear thermometer allowing the measurement of heat radiation emitted from the forehead. The measurement modes can be automatically or manually switched, and the measurement results can be converted into corresponding temperature figures readable to users.
Abstract:
An ear thermometer probe structure comprises a shell body. A hollow thermal absorption component is disposed in the shell body, and contacts several positioning points one the inner wall of the shell body. An air gap is formed at the part of the thermal absorption component not contacting the shell body. A wave guide is disposed in the thermal absorption component. The rear section of the wave guide tightly contacts the thermal absorption component, and the front section thereof is separated from the shell body by an air gap. A filter is disposed at the front end of the wave guide to let infrared rays be transmitted. An annular sealing pad is located between the filter and the top of the shell body. A sensor is disposed behind the wave guide and fixed on the thermal absorption component. The sensor is separated from the thermal absorption component and the wave guide by an annular air room.
Abstract:
Method and arrangement for an optical detector arrangement for detecting and registering incident ultraviolet (UV) radiation and characteristics of a protective agent applied thereon. The arrangement includes at least two sensors each connected to electrical circuitry for generating a detection signal, one of the at least two sensors is arranged as a reference sensor and the other one as a detector sensor to be applied with a protective agent. The electrical circuitry is arranged to compare signals from the reference and indicator sensors and output an signal corresponding to the characteristics of the protective agent.
Abstract:
The measuring method of the invention eliminates the limitation of the observation time scale controlled of the optical path length, and expands the range of samples of the thermoreflectance method using a pulse laser. The method irradiates an extremely fast light pulse to a sample as a light pulse to excite the sample and a probe light pulse to the sample, and observes the temperature variation of the sample by detecting a reflected light from the sample. The method prepares for electrically controllable two pulse lasers: one for exciting the sample, another one for probing, separately. By electrically controlling the difference between the time at which the exciting light irradiates the sample and the time at which the probing light irradiates the sample, the method detects a signal that varies depending on the time difference between the pump pulse and the probe pulse.
Abstract:
A process and system for flame detection includes a microprocessor-controlled detector with a first sensor for sensing temporal energy in a first optical frequency range, and a second sensor for sensing temporal energy in a second optical frequency range. The temporal energy sensed in the respective first and second optical frequency ranges are transformed into respective first and second spectra of frequency components. A compensated spectrum of frequency components is generated by performing a frequency bin subtraction of the first and second spectra of frequency components. The compensated spectrum of frequency components represents the energy emitted from the environment with energy emitted from false alarm sources. An average amplitude and centroid of the compensated spectrum of frequency components are obtained and used to determine if a monitored phenomenon represents an unwanted fire situation. The compensated spectrum of frequency components can be compared to reference compensated spectra of frequency components generated from known unwanted fire sources and known false alarm sources. This comparison can be facilitated by constructing a frequency space scatter plot from respective average amplitudes and centroids obtained from the reference compensated spectra. A fire detection boundary can be defined, which excludes substantially all of the false alarm sources. Inclusion of the unknown phenomenon within the fire detection boundary is indicative of an unwanted fire situation.
Abstract:
A method of monitoring the nugget size of the welds produced by a spot welding machine, comprises optically imaging a region of a weld spot onto a transducer (21) after completion of the spot welding process. The transducer (21) produces an electrical signal having avalue dependent on the mean intensity and the wavelength distribution of the radiation emitted from the region of the weld spot (18) imaged on to the transducer (21). A computer (24) analyses the electrical signal produced by the transducer (21) to evaluate a weld nugget size indicator value and issue a warning through a visual display module (31) when welds of poor size are being, or about to be produced, so that corrective action can be taken by replacing or dressing the electrodes.
Abstract:
In order to determine a temperature on a semiconductor component (1), a scanning light wave (7) is irradiated onto a measuring point on the semiconductor component, a response light wave (8, 8null) reflected from the measuring point is recorded, and the temperature of the measuring point is ascertained with the aid of a temperature-dependent property R of the response light wave (8, 8null).
Abstract:
An infrared light detection array with a plurality of infrared light detectors, said infrared light detectors each comprising: a supporting leg fixed to said substrate at one end, having a laminated structure of an insulation layer and a wiring layer; and a heat insulation structure portion supported by said supporting leg, comprising an insulation layer having a first surface to serve as a surface of incidence for infrared light to impinge on and a second surface to serve as a surface of incidence for reading light to impinge on, a reflection film which is formed on said second surface of said insulation layer, and a resistor connected with said wiring layer, and as said supporting legs heated up to a detection temperature by said infrared light reversibly warp, said infrared light detectors change the reflection direction of said reading light impinging upon said reflection films.
Abstract:
A thermal torch (12) comprises an infrared camera (22) and a visible light emitter (28, 26) arranged so as to illuminate hot objects with visible light. This projection of visible light onto the scene, rather than observing it at infrared wavelengths converted to visible light by a display screen, makes viewing the scene more natural. Applications include medical imaging equipment, nightdriving systems, stage lights, and security lights. The profile of the beam of visible light can be modulated with a beam profiler (26) which may be an LCD. The infrared camera (22) and visible projector (28, 26) may be bore-sighted to facilitate overlying of the visible projected image onto the scene.
Abstract:
An improved apparatus for measuring the temperature of an object such as a food object. Also, a related method, container, transportation member and production line which utilizes this apparatus. The apparatus includes a coupling device for coupling radiation emanating from the object to at least a first radiation temperature measuring radiometer, and a first device for switching measurement circuitry between measuring the radiation temperature of at least a first reference temperature and the radiation temperature of the object.