Abstract:
A magnetic bearing is disclosed that includes a sensing wire wrapped around one or more of the bearing coils and configured to measure the resistance to ground of each bearing coil. With the presence of contaminants such as liquids, a protective coating disposed about the bearing coils degrades over time, thereby reducing the resistance to ground of the bearing coils. The sensing wire transmits the detected resistance to ground of the bearing coils to an adjacent sensing device, which can provide an output that informs a user whether corrective action is required to prevent damage or failure of the magnetic bearing.
Abstract:
A fluid compression system is disclosed having a hermetically-sealed housing with at least a motor and a compressor arranged therein. The motor may drive both the compressor and a blower configured to circulate a cooling gas throughout the housing and thereby cool the motor and accompanying radial bearings. The cooling gas may be cooled in a gas-to-gas heat exchanger fluidly coupled to the blower and configured to receive a flow of process gas to cool the cooling gas. The process gas may be the suction process gas for the compressor, or the compressed process gas as discharged from the compressor.
Abstract:
A cooling system for a rotating machine, such as a centrifugal compressor. Specifically, the cooling system may be configured to cool radial and axial magnetic bearings in the rotating machine and the bearing control system that controls said bearings. The cooling system includes canned magnetic radial bearings on each end of the rotor and a canned bearing control system. The canned bearings and canned bearing control system may be filled with a dielectric cooling fluid and in fluid communication with each other via sealed conduits. Accordingly, the radial magnetic bearings and the bearing control system may be entirely immersed in the dielectric cooling fluid to regulate heat generation. An axial magnetic bearing may also be canned and fluidly coupled to the cooling system to immerse the axial magnetic bearing in the dielectric cooling fluid.
Abstract:
Disclosed is a snubber bearing assembly for protecting a rotor and accompanying bearings from radial and axial rotor transient overload events. The bearing assembly includes a snubber journal mounted on the rotor and a snubber housing having a radial snubber bearing mounted on its inside surface, the radial snubber bearing being radially-offset from an outer radial surface of the snubber journal. Lubricating plugs are disposed within a plurality of holes defined in the radial snubber bearing, the lubricating plugs being configured to provide lubrication between the radial contact surface and the outer radial surface during a radial rotor transient overload event. The snubber housing can also include opposing axial snubber bearings that have lubricating plugs disposed within holes defined therein also. The opposing axial snubber bearings are configured to be axially-offset from inner axial surfaces defined by the rotor journal and provide lubrication therebetween during an axial rotor transient overload event.
Abstract:
An unloader assembly and method for unloading a compressor, with the unloader assembly including one or more fingers configured to engage one or more valve elements of a suction valve of the compressor. The unloader assembly also includes a biasing member coupled to the one or more fingers and configured to bias the one or more fingers downward such that the one or more fingers follow the one or more valve elements, and an actuating rod coupled to the one or more fingers and extending longitudinally therefrom. The unloader assembly further includes a first reservoir containing a smart fluid and adapted to receive the actuating rod, and a coil disposed at least one of proximal to and within the first reservoir, with the coil being configured to produce a field when an electrical current is supplied to the coil, to change one or more viscoelastic properties of the smart fluid.
Abstract:
A system and method for rapid pressurization of a motor compartment and cooling system during a shutdown, a surge, and/or other situations in which the suction pressure significantly varies. A motor/compressor arrangement includes a seal gas system fluidly communicating with the motor compartment via a motor pressurization line, with the outlet of the compressor, and with a shaft seal. A motor pressurization valve is coupled to the motor pressurization line and a controller is configured to open the motor pressurization valve at start-up of the motor-compressor to supply seal gas to the motor compartment and to pressurize the motor compartment when a difference between the seal gas supply pressure and the suction pressure is indicative of the seal gas supply pressure being insufficient.
Abstract:
An apparatus for supporting a shaft of a turbomachine. The apparatus may include a magnetic bearing to support the shaft during a normal operation of the turbomachine, and an auxiliary bearing to support the shaft during a drop event. The apparatus may also include a disk coupled to the shaft and comprising a substantially non-ferrous, conductive material, and a magnetic assembly disposed proximal the disk, the magnetic assembly configured to magnetically engage the disk to damp vibrations during the drop event, to apply a circumferential braking force on the disk during the drop event, or both.
Abstract:
A compressor is disclosed having a shaft seal assembly and system that allows a high-pressure compressor to settle-out at a lower pressure level during shutdown. The seal assembly may be disposed about a portion of the shaft and define a blow-down seal chamber, the seal assembly including one or more gas seals in fluid communication with the blow-down seal chamber. A blow-down line is communicably coupled to the blow-down seal chamber to reference the blow-down seal chamber to a low pressure reference, such as a separate centrifugal compressor, or the like. Referencing the blow-down seal chamber to the low pressure reference reduces the required sealing pressure of the one or more gas seals. A valve may be disposed in the blow-down line and configured to regulate a flow of process gas leakage through the blow-down line.
Abstract:
A seal assembly for use in a turbomachine is provided. The seal assembly has an annular division wall with outside and inside surfaces, a carrier ring disposed adjacent the inside surface of the annular division wall, and a sealing substrate metallurgically-bonded to an inner-most surface of the carrier ring. The sealing substrate is machined to form a seal surface that can be disposed proximate a rotor and maintained substantially parallel thereto during operation of the turbomachine.
Abstract:
Apparatus and methods for separating a fluid, with the apparatus including a rotatable drum having an inner drum wall and an outer drum wall disposed around the inner drum wall to define a separation passage therebetween. The apparatus also includes radial separator blades that are curved in a circumferential direction and are disposed in the separation passage of the drum, the radial separator blades extending radially at least partially between the inner drum wall and the outer drum wall. The apparatus further includes a first circumferential separator blade that is curved in a radial direction and is disposed in the separation passage of the drum, the first circumferential separator blade extending at least partially around the inner drum wall. The apparatus also includes a housing disposed around the drum and configured to receive a higher-density component of the fluid separated in the separation passage.