Abstract:
The present invention provides a remote monitoring system for monitoring the operation of a fluid treatment system and/or the qualities, characteristics, properties, etc., of the fluid being processed or treated by the fluid treatment system. The present invention also relates to carbon nanotube sensors.
Abstract:
A carbon quantifying cell configured to receive a fluid is provided, including two or more electrodes positioned at least partially in the fluid, and meter electronics configured to place an electrical oxidization, polarization, and/or adsorption program across the two or more electrodes and at least partially oxidize carbon materials in the fluid, apply an AC voltage of a predetermined amplitude across the two or more electrodes, measuring the resulting AC current across the two or more electrodes, wherein a ratio of amplitudes and a phase angle difference provides information for calculating a fluid impedance, receive an electrical response of the fluid to the electrical oxidization, polarization, and/or adsorption program, quantify the carbon materials in the fluid using the electrical response, and detect interfering materials in the fluid using the fluid impedance.
Abstract:
An embodiment provides a method for determining a concentration of an analyte in a fluid sample, including: introducing a fluid sample into a measurement chamber; operating a measurement device to introduce light of a first wavelength to the fluid sample; measuring, with a detector, absorbance of the light of the first wavelength with respect to the fluid sample; operating the measurement device to introduce light of a second wavelength to the fluid sample; measuring, with the detector, absorbance of the light of the second wavelength with respect to the fluid sample; determining, using a processor of the measurement device, an absorbance ratio of the fluid sample using both the measured absorbance of the light of the first wavelength and the measured absorbance of the light of the second wavelength; and providing, via an output device, a determined concentration value for the fluid sample that correlates to the absorbance ratio. Other aspects are described and claimed.
Abstract:
Described herein is an insertion mount, including a threaded cylindrical mount with a hollow inner diameter and a lengthwise slot cutout for receiving a probe; and a drive assembly further comprising a drive nut, wherein the drive nut has threads that engage the threaded outer diameter of the threaded cylindrical mount which allows the drive nut to be moved the length of the cylindrical mount by screwing the drive nut of the drive assembly onto the threads of the threaded cylindrical mount.
Abstract:
An apparatus can include a controller; memory accessible to the controller; a bus operatively coupled to the controller; sensor circuitry operatively coupled to the bus where the sensor circuitry generates measurement information representative of an environmental condition; and where the controller determines codes, each of the codes representative of an individual operational state of the apparatus, and where the controller associates, in the memory, at least a portion of the measurement information with at least one of the codes.
Abstract:
An aspect provides a method of determining a concentration of free chlorine in an aqueous sample, including adding a reagent to the sample, the reagent being reactive with the free chlorine at a first kinetic rate and reactive with at least one chloramine at a second kinetic rate, the first kinetic rate being different from the second kinetic rate; measuring an absorbance response over time resulting from reaction of the free chlorine and the at least one chloramine with the reagent over time; and determining the concentration of the free chlorine in the sample based on a determined rate of change of the absorbance response over time. Other aspects are described and claimed.
Abstract:
A kit for determining if a shock treatment is required for a water source may comprise a test strip having at least two chemically treated test areas. One of the areas is responsive in color to a concentration of free chlorine in the water and another test area is responsive in color to a concentration of total chlorine in the water. A chlorine indicator scale may be provided on a substrate, such as a label, and comprises a plurality of pairs of colored indicia and each pair of colored indicia representing a color pattern indicating a concentration, or range of concentrations, of total chlorine and free chlorine in the water. An alphanumeric designation may be provided adjacent to each pair of indicia indicating whether a shock treatment is required for the water source based on a color pattern the associated indicia pattern.
Abstract:
The present invention provides a remote monitoring system for monitoring the operation of a fluid treatment system and/or the qualities, characteristics, properties, etc., of the fluid being processed or treated by the fluid treatment system. The present invention also relates to carbon nanotube sensors.
Abstract:
An embodiment provides a permanent sealing assembly for a container, such as a reagent bottle. The permanent sealing assembly allows for drip-less reagent container exchange for liquid analysis instruments. The permanent sealing assembly may be integrated into a container, such as a reagent bottle, and provides an outflow tube that extends into the container. The permanent sealing assembly and the outflow tube thereof remain in the container such that, on an exchange of regent containers, a removable cap assembly of the liquid analysis instrument may be affixed to a new container of reagent without the risk of reagent from the old container contacting the surroundings. Other aspects are described and claimed.