Abstract:
Amino benzoates have been found to be useful curing agents for epoxy resins particularly para amino benzoates containing at least two primary amine groups and at least two carboxyl moieties, the amino benzoates are particularly useful as curatives in prepregs.
Abstract:
The bandwidth or acoustical range of an acoustic structure is increased by locating a sound wave guide within the acoustic cell. The wave guide divides the cell into two acoustical chambers. The two chambers provide an effective increase in resonator length of the cell.
Abstract:
The invention is directed to carbon fibers having high tensile strength and modulus of elasticity. The invention also provides a method and apparatus for making the carbon fibers. The method comprises advancing a precursor fiber through an oxidation oven wherein the fiber is subjected to controlled stretching in an oxidizing atmosphere in which tension loads are distributed amongst a plurality of passes through the oxidation oven, which permits higher cumulative stretches to be achieved. The method also includes subjecting the fiber to controlled stretching in two or more of the passes that is sufficient to cause the fiber to undergo one or more transitions in each of the two or more passes. The invention is also directed to an oxidation oven having a plurality of cooperating drive rolls in series that can be driven independently of each other so that the amount of stretch applied to the oven in each of the plurality of passes can be independently controlled.
Abstract:
A core crush resistant prepreg for use in making a fiber reinforced composite panel structure is provided. The prepreg comprises a woven fabric consisting essentially of carbon fiber tow strands impregnated with a hardenable polymeric resin composition. Typically the fabric has an areal weight of from about 180 to about 205 grams per square meter. The prepreg has an average fiber tow aspect ratio of less than about 15.4, a prepreg thickness of at least about 0.245 mm, and a prepreg openness of at least about 1.2 percent but less than about 6.0 percent. Preferably, the resin composition is predominantly viscous in nature and has a tan null value of between 0.9 and 2.0 at an elevated temperature between 70null C. and 140null C., and an average epoxy functionality of greater than 2.0. A method for evaluating core crush resistance properties of a prepreg is also provided. The method includes determining a fiber tow average aspect ratio of the prepreg, determining a prepreg thickness, and comparing said average fiber tow aspect ratio and prepreg thickness to a set of predetermined values.
Abstract:
A core crush resistant prepreg for use in making a fiber reinforced composite panel structure is provided. The prepreg comprises a woven fabric consisting essentially of carbon fiber tow strands impregnated with a hardenable polymeric resin composition. Typically the fabric has an areal weight of from about 180 to about 205 grams per square meter. The prepreg has an average fiber tow aspect ratio of less than about 15.4, a prepreg thickness of at least about 0.245 mm, and a prepreg openness of at least about 1.2 percent but less than about 6.0 percent. Preferably, the resin composition is predominantly viscous in nature and has a tan null value of between 0.9 and 2.0 at an elevated temperature between 70null C. and 140null C., and an average epoxy functionality of greater than 2.0. A method for evaluating core crush resistance properties of a prepreg is also provided. The method includes determining a fiber tow average aspect ratio of the prepreg, determining a prepreg thickness, and comparing said average fiber tow aspect ratio and prepreg thickness to a set of predetermined values.
Abstract:
Pre-impregnated composite material (prepreg) that can be cured/molded to form aerospace composite parts. The prepreg includes carbon reinforcing fibers and an uncured resin matrix. The resin matrix includes an epoxy resin component, polyethersulfone as a toughening agent, a thermoplastic particle component, a nanoparticle component and a curing agent
Abstract:
A powder composition suitable for use in selective laser sintering for printing an object. The powder composition includes a first fraction having a polyetherketoneketone (PEKK) powder having a plurality of particles. The powder composition includes a second fraction having a plurality of siloxane particles that is dry blended with the PEKK powder prior to selective laser sintering of the powder. In some embodiments, the powder composition includes a third fraction of carbon fiber. The powder composition when used in selective laser sintering results in parts with more consistent results and improves process economics.
Abstract:
A powder composition suitable for use in selective laser sintering for printing an object. The powder composition includes a first fraction comprising a plurality of polyaryletherketone (PAEK) particles having a mean diameter less than 30 microns, a second fraction comprising a plurality of polyaryletherketone (PAEK) particles having a mean diameter greater than 30 microns, and a third fraction comprising a plurality of carbon fibers. The first fraction and the second fraction are formed by an air classification separation performed on a pulverized powder. After the separation, the first fraction, the second fraction, and the third fraction are blended in a high intensity mixer. The powder composition when used in selective laser sinter results in parts with increased tensile strength and reduced surface roughness, among other improvements, as compared to similar powders omitting the first fraction. The PAEK may include polyetherketoneketone (PEKK).
Abstract:
A method of analytically determining a laser power for laser sintering includes choosing a batch of powder material for building a plurality of test rods; selecting a range of laser power for building the test rods; determining a plurality of power increments within the selected range to define a plurality of laser power settings; programming a laser sintering machine to build at least one test rod at each laser power setting; constructing the test rods; wherein the optimal power is at least one watt below a lowest laser power setting associated with the formation of voids; identifying the laser power setting used to construct a respective test rod without formation of voids in the surface as an optimal laser power; and configuring the selective laser sintering machine with the optimal laser power when conducting a laser sintering process using the chosen batch of powder material.
Abstract:
A semipreg that can be cured/molded to form aerospace composite pails -including rocket booster casings. The semipreg includes a fibrous layer and a resin layer located on one side of the fibrous layer. The resin layer includes an epoxy component that is a combination of a hydrocarbon epoxy novolac resin and a trifunctional epoxy resin and optionally a tetraiunctional epoxy resin. The resin matrix includes polyethersulfone as a toughening agent arid a thermoplastic particle component.