Abstract:
An approach for introspection of a software component and generation of a conditional memory dump, a computing device executing an introspection program with respect to the software component is provided. An introspection system comprises one or more conditions for generating the conditional memory dump based on operations of the software component. In one aspect, a computing device detects, through an introspection program, whether the one or more conditions are satisfied by the software component based on information in an introspection analyzer of the introspection program. In addition, the computing device indicates, through the introspection program, if the one or more conditions are satisfied by the software component. In another aspect, responsive to the indication, the computing device generates the conditional memory dump through the introspection program.
Abstract:
A method of operating a network message interceptor for enforcing an authentication policy for communication over a network between first and second network endpoints, the interceptor being in communication with the network and external to the first and second endpoints, the network including transport layer security, the method comprising the steps of: intercepting a handshake message transmitted over the network between the first and second endpoints; extracting a certificate for an authenticating one of the endpoints from the handshake message; determining a validity status of the certificate for confirming an identity of the authenticating endpoint; and preventing communication between the first and second endpoints based on a negatively determined validity status of the certificate.
Abstract:
A CAPTCHA challenge tool for determining if a user of a computer is a human or an automated program. The tool presents a set of images. At least a portion of the set of images suggests a chronological sequence when organized correctly. The tool receives a suggested order from the user of the computer. If the suggested order matches the correct order, the tool assumes that the user is a human, if the suggested order does not match the correct order, the tool assumes the user is an automated program.
Abstract:
A method of automating incoming message prioritization. The method including training a global classifier of a computer system using training data. Dynamically training a user- specific classifier of the computer system based on a plurality of feedback instances. Inferring a topic of the incoming message received by the computer system based on a topic- based user model. Computing a plurality of contextual features of the incoming message. Determining a priority classification strategy for assigning a priority level to the incoming message based on the computed contextual features of the incoming message and a weighted combination of the global classifier and the user specific classifier. Classifying the incoming message based on the priority classification strategy.
Abstract:
A plurality of data arrays are coupled to a plurality of nodes via a plurality of adapters. The plurality of adapters discover the plurality of data arrays during startup, and information about the plurality of data arrays are communicated to corresponding local nodes of the plurality of nodes, wherein the local nodes broadcast the information to other nodes of plurality of nodes. A director node of the plurality of nodes determines which data arrays of the plurality of data arrays are a current set of global metadata arrays, based on the broadcasted information.
Abstract:
A semiconductor structure (1) comprises a processed semiconductor substrate (2) including active electronic components (3); a dielectric layer (4) covering at least partially the processed semiconductor substrate (2, 3); an interface layer (5) which is suitable for growing optically active material on the interface layer, wherein the interface layer (5) is bonded to the dielectric layer (4); wherein the optical gain layer (5) and the processed semiconductor substrate (2, 3) are connected through the dielectric layer (4) by electric and/or optical contacts (6). A method for fabricating a semiconductor structure (1) comprises: providing (S1) a processed semiconductor substrate (2) including active electronic components (3); depositing (S2) a dielectric layer (4) covering at least partially the processed semiconductor substrate (2, 3); bonding (S4) an interface layer (5) to the dielectric layer (4), wherein the interface layer (5) is suitable for growing optically active material on the interface layer; and connecting (S7) the interface layer (5) and the processed semiconductor substrate (2, 3) with each other through the dielectric layer (4) by electric and/or optical contacts (6).
Abstract:
Identifying whether a first application is malicious. The first application can be presented for installation on a processing system. The first application can be scanned, via a static analysis implemented by a processor, to determine whether a user interface layout of the first application is suspiciously similar to a user interface layout of a second application installed on the processing system. When the user interface layout of the first application is suspiciously similar to the user interface layout of the second application installed on the processing system, an alert can be generated indicating that the first application is malicious.
Abstract:
A computer system for optimizing instructions is configured to identify two or more machine instructions as being eligible for optimization, to merge the two or more machine instructions into a single optimized internal instruction that is configured to perform functions of the two or more machine instructions, and to execute the single optimized internal instruction to perform the functions of the two or more machine instructions. Being eligible includes determining that the two or more machine instructions include a first instruction specifying a first target register and a second instruction specifying the first target register as a source register and a target register. The second instruction is a next sequential instruction of the first instruction in program order, wherein the first instruction specifies a first function to be performed, and the second instruction specifies a second function to be performed.
Abstract:
A distributed fabric system has distributed line card (DLC) chassis and scaled-out fabric coupler (SFC) chassis. Each DLC chassis includes a network processor and fabric ports. Each network processor of each DLC chassis includes a fabric interface in communication with the DLC fabric ports of that DLC chassis. Each SFC chassis includes a fabric element and fabric ports. A communication link connects each SFC fabric port to one DLC fabric port. Each communication link includes cell-carrying lanes. Each fabric element of each SFC chassis collects per-lane statistics for each SFC fabric port of that SFC chassis. Each SFC chassis includes program code that obtains the per-lane statistics collected by the fabric element chip of that SFC chassis. A network element includes program code that gathers the per-lane statistics collected by each fabric element of each SFC chassis and integrates the statistics into a topology of the entire distributed fabric system.
Abstract:
Various embodiments of accidental shared volume erasure prevention include systems, methods, and/or computer program products for receiving a request to access a volume from a requesting system, determining whether the volume is associated with any system other than the requesting system, and preventing accidental erasure of the volume based on the determination.