Abstract:
Method and system for presenting storage in a virtual machine environment are provided. A storage volume is allocated to an existing profile, when the existing profile meets attributes for a requested storage and a new profile is generated when an existing profile does not meet the attributes and the storage volume is assigned to the new profile.
Abstract:
A system and method of managing event tracking includes a tracking registry. The tracking registry includes a memory for storing tracking entries, a tracking entry hierarchy, and a registry interface configured to receive requests from a plurality of modules. The tracking registry opens a tracking entry based on a registry request received from a first module of the plurality of modules, and being associated with a first operation being handled by the first module and including a parent identifier of a parent tracking entry of the tracking entry, updates the tracking entry hierarchy based on the parent identifier, stores the first tracking entry in the memory, and closes the tracking entry based on an entry closing request received from a second module of the plurality of modules and being associated with completion of a second operation being handled by the second module. The second operation performs processing associated with completion of the first operation.
Abstract:
Techniques to account for storage consumption and capacity allocation across heterogeneous storage objects are disclosed. A capacity accountability system can ascertain a set of heterogeneous storage objects provisioned for a storage consumer, where the heterogeneous storage objects is categorized by storage object hierarchy levels. The capacity accountability system can then identify an association between the storage consumer and a storage object hierarchy level and account for storage object consumption and storage capacity allocation of the storage consumer by normalizing storage consumption data and capacity allocation data at the storage object hierarchy level across the heterogeneous storage objects.
Abstract:
Synchronous local and cross-site switchover and switchback operations of a node in a disaster recovery (DR) group are described. In one embodiment, during switchover, a takeover node receives a failover request and responsively identifies a first partner node in a first cluster and a second partner node in a second cluster. The first partner node and the takeover node form a first high-availability (HA) group and the second partner node and a third partner node in the second cluster form a second HA group. The first and second HA groups form the DR group and share a storage fabric. The takeover node synchronously restores client access requests associated with a failed partner node at the takeover node.
Abstract:
Techniques for mobile clusters for collecting telemetry data and processing analytic tasks, are disclosed herein. The mobile cluster includes a processor, a plurality of data nodes and an analysis module. The data nodes receive and store a snapshot of at least a portion of data stored in a main Hadoop storage cluster and real-time acquired data received from a data capturing device. The analysis module is operatively coupled to the processor to process analytic tasks based on the snapshot and the real-time acquired data when the storage cluster is not connected to the main storage cluster.
Abstract:
A network-based storage system includes multiple system controllers and multiple physical storage devices arranged into aggregates, with each storage device having an ownership portion indicating a system controller to which it belongs. First and second system controllers are in communication with each other, the storage devices, and a separate host server, and each system controller can be designated as a system node that controls a respective aggregate of storage devices and reads and writes to the storage devices based upon commands from the separate host server. The first system controller controls a first system node and can facilitate an automated hotswap replacement of the second system controller that originally controls a second system node with a separate third controller that subsequently controls the second system node. The first system controller can take over control of the second system node during the automated hotswap replacement of the second controller.
Abstract:
The techniques introduced here provide for enabling deduplication operations for a file system without significantly affecting read performance of the file system due to fragmentation of the data sets in the file system. The techniques include determining, by a storage server that hosts the file system, a level of fragmentation that would be introduced to a data set stored in the file system as a result of performing a deduplication operation on the data set. The storage server then compares the level of fragmentation with a threshold value and determines whether to perform the deduplication operation based on a result of comparing the level of fragmentation with the threshold value. The threshold value represents an acceptable level of fragmentation in the data sets of the file system.
Abstract:
A novel RDMA connection failover technique that minimizes disruption to upper subsystem modules (executed on a computer node), which create requests for data transfer. A new failover virtual layer performs failover of an RDMA connection in error so that the upper subsystem that created a request does not have knowledge of an error (which is recoverable in software and hardware), or of a failure on the RDMA connection due to the error. Since the upper subsystem does not have knowledge of a failure on the RDMA connection or of a performed failover of the RDMA connection, the upper subsystem continues providing requests to the failover virtual layer without interruption, thereby minimizing downtime of the data transfer activity.
Abstract:
Collaborative management of shared resources is implemented by a storage server receiving, from a first resource manager, notification of a violation for a service provided by the storage server or device coupled to the storage server. The storage server further receives, from each of a plurality of resource managers, an estimated cost of taking a corrective action to mitigate the violation and selects a corrective action proposed by one of the plurality of resource managers based upon the estimated cost. The storage server directs the resource manager that proposed the selected corrective action to perform the selected corrective action.
Abstract:
Method and system for partially cloning a data container with compression is provided. A storage operating system determines if a portion of a source data container that is to be cloned includes a plurality of compressed blocks that are compressed using a non-variable compression group size. The operating system clones the plurality of compressed blocks with the non-variable compression group size and de-compresses a plurality of blocks of the data container that are not within the non-variable compression group size. The plurality of compressed blocks and the plurality of blocks that are not within the non-variable compression group size are then stored as a partially cloned copy of the source data container.