Abstract:
The present invention is directed towards a low energy method for the preparation of nanocellulose using selected organic or inorganic swelling agents. The use of these swelling agents allows opening up the intercrystalline structure and partially the intracrystalline structure of cellulosic materials thereby achieving a reduction in the energy required to subsequently process the resultant swollen cellulose material into nanocellulose.
Abstract:
A method for the spinning of a fibre comprising cellulose nano-fibrils being aligned along the main axis of the fibre from a lyotropic suspension of cellulose nano-fibrils, said nano-fibril alignment being achieved through extension of the extruded fibre from a die, spinneret or needle, wherein said fibre is dried under extension and the aligned nano-fibrils aggregate to form a continuous structure and wherein the suspension of nano-fibrils, which has a concentration of solids of at least 7% wt, is homogenised using at least a mechanical, distributive mixing process prior to its extrusion. The fibrils used in this method can be extracted from a cellulose-rich material such as wood. The invention also related to a cellulose-based fibre obtained according to this method and to a cellulose fibre which contains at least 90% wt of crystallised cellulose.
Abstract:
Disclosed is a printing sheet for offset printing, comprising at least one image receiving coating and optionally one or several pre-coatings beneath said image receiving coating, said coatings comprising a pigment part, a binder part, and optionally additives, wherein the pigment part essentially consists of one or a mixture of fine particulate pigments selected from the group of carbonate, kaolin, solid or vacuolated polymer pigment, wherein said binder part comprises waterglass.
Abstract:
The specification pertains to a single or multiple coated printing sheet in particular but not exclusively for sheet-fed offset printing with an image receptive coating layer on a paper substrate. Unexpectedly short converting times and times until reprinting is possible can be achieved by choosing a coating, in which the image receptive coating layer comprises a top layer and/or at least one second layer below said top layer, said top and/or second layer comprising a pigment part, wherein this pigment part is composed of 1 - 95 preferably of 80-95 parts in dry weight of a fine particulate carbonate and/or of a fine particulate kaolin and 1 - 100, preferably 6 to 20 parts in dry weight of a fine particulate silica, and a binder part, wherein this binder part is composed of 5-20 parts in dry weight of binder and less than 4 parts in dry weight of additives. Furthermore methods for making such a printing sheet and uses of such a printing sheet are disclosed.
Abstract:
Coating for an offset paper comprising a catalyst for fixing polymerizable or crosslinkable constituents of the offset ink. The chemical drying time can be substantially reduced if such a catalyst system is added to the coating, wherein preferentially such a catalyst is a transition metal complex, like Mn (bipy).