Abstract:
A solution for reducing a number of dislocations in an active region of an emitting device is provided. A dislocation bending structure can be included in the emitting device between the substrate and the active region. The dislocation bending structure can be configured to cause dislocations to bend and/or annihilate prior to reaching the active region, e.g., due to the presence of a sufficient amount of strain. The dislocation bending structure can include a plurality of layers with adjacent layers being composed of a material, but with molar fractions of an element in the respective material differing between the two layers. The dislocation bending structure can include at least forty pairs of adjacent layers having molar fractions of an element differing by at least five percent between the adjacent layers.
Abstract:
A solution for reducing a number of dislocations in an active region of an emitting device is provided. A dislocation bending structure can be included in the emitting device between the substrate and the active region. The dislocation bending structure can be configured to cause dislocations to bend and/or annihilate prior to reaching the active region, e.g., due to the presence of a sufficient amount of strain. The dislocation bending structure can include a plurality of layers with adjacent layers being composed of a material, but with molar fractions of an element in the respective material differing between the two layers. The dislocation bending structure can include at least forty pairs of adjacent layers having molar fractions of an element differing by at least five percent between the adjacent layers.
Abstract:
An emitting device including an active region having quantum wells alternating with barriers of varying compositions is provided. The barriers can be composed of a group Ill-nitride based material, in which a molar fraction of one or more of the group III elements in two barriers adjacent to a single quantum well differ by at least one percent. Two barriers adjacent to a single quantum well can have barrier heights differing by at least one percent.
Abstract:
The invention relates to phosphor-conversion (PC) sources of white light, which are composed of at least two groups of emitters, such as ultraviolet (UV) light- emitting diodes (LEDs) and wide-band (WB) or narrow-band (NB) phosphors that completely absorb and convert the flux generated by the LEDs to other wavelengths, and to improving the color quality of the white light emitted by such light sources. In particular, embodiments of the present invention describe new 2-4 component combinations of peak wavelengths and bandwidths for white PC LEDs with complete conversion. These combinations are used to provide spectral power distributions that enable lighting with a considerable portion of a high number of spectrophotomethcally calibrated colors rendered almost indistinguishably from a blackbody radiator or daylight illuminant, and which differ from distributions optimized using standard color-rendering assessment procedures based on a small number of test color samples.
Abstract:
A contact to a semiconductor including sequential layers of Cr, Ti, and Al is provided, which can result in a contact with one or more advantages over Ti/AI- based and Cr/AI-based contacts. For example, the contact can: reduce a contact resistance; provide an improved surface morphology; provide a better contact linearity; and/or require a lower annealing temperature, as compared to the prior art Ti/AI-based contacts.
Abstract:
A solution for suppressing organism growth using ultraviolet radiation generated by solid state ultraviolet radiation emitters, such as ultraviolet diodes is provided. The invention includes a connection structure that includes a plurality of solid state ultraviolet radiation emitters disposed thereon. Each of the plurality of solid state ultraviolet radiation emitters emits ultraviolet radiation having a wavelength less than or equal to four hundred nanometers to harm a target organism that may be present on a surface. In one embodiment, the connection structure comprises a two-dimensional mesh that may be placed adjacent an air filter, incorporated in a cover, and/or moved with respect to a surface, such as the interior of an air duct. In this manner, the invention can suppress and/or prevent the growth of organisms, such as biofilms and mold, in locations that are susceptible to such growth.
Abstract:
A solution for sterilizing one or more hollow components of a device, such as a medical device, is provided. Ultraviolet radiation having one or more predominant wavelength(s) and a sufficient dose is generated and directed to an interior side of the hollow component(s). The predominant wavelength(s) is/are selected to harm one or more target organisms that may be present on the interior side. The ultraviolet radiation can be delivered by a structure that is periodically inserted and retracted into the hollow component. The structure can be configured to provide additional cleaning capability, such as suction, for removing matter that may be present in the hollow component.
Abstract:
A light emitting heterostructure and/or device in which the light generating structure is contained within a potential well is provided. The potential well is configured to contain electrons, holes, and/or electron and hole pairs within the light generating structure. A phonon engineering approach can be used in which a band structure of the potential well and/or light generating structure is designed to facilitate the emission of polar optical phonons by electrons entering the light generating structure. To this extent, a difference between an energy at a top of the potential well and an energy of a quantum well in the light generating structure can be resonant with an energy of a polar optical phonon in the light generating structure material. The energy of the quantum well can comprise an energy at the top of the quantum well, an electron ground state energy, and/or the like.
Abstract:
An improved nitride-based light emitting heterostructure is provided. The nitride-based light emitting heterostructure includes an electron supply layer and a hole supply layer with a light generating structure disposed there between. The light generating structure includes a set of barrier layers, each of which has a graded composition and a set of quantum wells, each of which adjoins at least one barrier layer. Additional features, such as a thickness of each quantum well, can be selected/incorporated into the heterostructure to improve one or more of its characteristics. Further, one or more additional layers that include a graded composition can be included in the heterostructure outside of the light generating structure. The graded composition layer(s) cause electrons to lose energy prior to entering a quantum well in the light generating structure, which enables the electrons to recombine with holes more efficiently in the quantum well.
Abstract:
Gerät, aufweisend: einen Ultraviolett-transparenten Bildschirm, wobei eine Außenfläche des Ultraviolett-transparenten Bildschirms für einen Benutzer des Gerätes zugänglich ist; eine Abdeckung, die zum Bedecken des Ultraviolett-transparenten Bildschirms konfiguriert ist, wobei eine der Außenfläche des Ultraviolett-transparenten Bildschirms gegenüberliegende Innenfläche der Abdeckung reflektierend ist, wobei die Abdeckung eine Vielzahl von Rippen enthält, die sich von derselben erstrecken, wobei jede Rippe von einer benachbarten Rippe durch einen vorbestimmten Zwischenraum getrennt ist, wobei jede Rippe einen separaten Abschnitt der Außenfläche des Ultraviolett-transparenten Bildschirms in Erwiderung darauf berührt, dass sich die Abdeckung in einer geschlossenen Stellung befindet, so dass sich eine Luftschicht zwischen der Abdeckung und dem Ultraviolett-transparenten Bildschirm in jedem zwischen benachbarten Rippen gebildeten Zwischenraum befindet; einen Satz Ultraviolettstrahlungsquellen, der eine Stelle aufweist, die zumindest innerhalb eines inneren Abschnitts des Ultraviolett-transparenten Bildschirms nahe einer Seitenkante desselben und/oder in einer vertikalen Orientierung eine Innenfläche des Ultraviolett-transparenten Bildschirms oder die Außenfläche desselben berührend enthält, wobei der Satz Ultraviolettstrahlungsquellen zum Erzeugen einer in Richtung der Außenfläche des Ultraviolett-transparenten Bildschirms gerichteten Ultraviolettstrahlung konfiguriert ist; eine diffusiv reflektierende Schicht, die zwischen dem Ultraviolett-transparenten Bildschirm und der Abdeckung angeordnet ist, wobei jede Rippe einen separaten Abschnitt der diffusiv reflektierenden Schicht in Erwiderung darauf berührt, dass sich die Abdeckung in einer geschlossenen Stellung befindet, so dass sich eine Luftschicht zwischen der Abdeckung und der diffusiv reflektierenden Schicht in jedem Zwischenraum befindet, der zwischen benachbarten Rippen gebildet ist, wobei die diffusiv reflektierende Schicht konfiguriert ist, um von dem Satz Ultraviolettstrahlungsquellen emittierte Strahlung über den ganzen Ultraviolett-transparenten Bildschirm diffusiv zurückzureflektieren und die emittierte Strahlung in Richtung der Abdeckung teilweise zu transmittieren, wobei die teilweise transmittierte Strahlung in Richtung von zumindest einem der Zwischenräume gelenkt wird, wobei die teilweise transmittierte Strahlung von einer Grenzfläche mit dem zumindest einen Zwischenraum der Zwischenräume durch die diffusiv reflektierende Schicht hindurch zu dem Ultraviolett-transparenten Bildschirm zur Desinfektion desselben reflektiert wird; und ein Überwachungs- und Steuersystem, das sich in einem inneren Abschnitt des Gerätes befindet, zum Managen der Ultraviolettstrahlung durch Durchführen eines Verfahrens, das Folgendes aufweist: Überwachen eines Satzes Attribute in Bezug auf die Außenfläche des Ultraviolett-transparenten Bildschirms; und Steuern der auf die Außenfläche des Ultraviolett-transparenten Bildschirms gerichteten Ultraviolettstrahlung basierend auf der Überwachung.