Abstract:
In one aspect, the present disclosure provides a method including rotating a rotatable surface with an object positioned thereon to a plurality of angular positions. The method also includes capturing, via an x-ray microtomography device at each of the plurality of angular positions, a tomograph of the object. The method also includes summing each tomograph of the object to create a three-dimensional image of the object. The method also includes using an additive manufacturing machine to create a three-dimensional replica of the object using the three-dimensional image of the object.
Abstract:
Various systems and methods may benefit from determination of environmental signatures in recordings. For example, such signatures may aid forensic analysis and alignment of media recordings, such as alignment of audio or video recordings. A method can include reading data representative of sensed light in a visual track of a video recording. The method can also include extracting an electric network frequency signal from the data representative of sensed light.
Abstract:
The disclosure relates to particle heaters for heating solid particles to store electrical energy as thermal energy. Thermal energy storage directly converts off-peak electricity into heat for thermal energy storage, which may be converted back to electricity, for example during peak-hour power generation. The particle heater is an integral part of an electro-thermal energy storage system, as it enables the conversion of electrical energy into thermal energy. As described herein, particle heater designs are described that provide efficient heating of solid particles in an efficient and compact configuration to achieve high energy density and low cost.
Abstract:
An improved rotary machine of the invention may include a rotor with an impeller mounted thereon. A side cavity may be formed between an impeller and the housing. The rotary machine may be further equipped with an annular subdividing disc for segmenting a fluid flow in the cavity into a first fluid flow between the disc and the impeller, and a second fluid flow on the other side of the disc between the disc and the housing. The rotary machine of the invention also features a peripheral annular space formed in the periphery of the housing in the cavity at a location adjacent to a peripheral region of the annular subdividing disc. Importantly, this peripheral annular space is void of restrictions to circumferential fluid flow therein so as to alter the second fluid flow in the cavity in order to reduce pressure variations and flow disturbances along the circumference of the rotary machine. This in turn improves rotational balance of the rotary machine.
Abstract:
Disclosed is a counterbalance system for moving a payload and a method for counterbalancing the payload. The system and method comprise a resilient member that is in communication with the payload to be moved and two resilient members that are in communication with either end of the first resilient member. An actuator is in communication with the first and third resilient members and a payload arm, attached to the payload, is in communication with the first and second resilient members. The resilient members may be compressed and relaxed during movement of the actuator and the payload arm so that energy may be transferred between the system and the payload to counterbalance the weight of the payload.
Abstract:
A method and devices are described, in which a transformable fiber at a first crystal structure is shaped from its pre-determined configuration into a new shaped configuration. The new shaped configuration of the transformable fiber is inserted into a cavity of a heat and fire protective item. The new shaped configuration of the transformable fiber is heated to above its transformation temperature to a second crystal structure. The heating transforms the new shaped configuration to its pre-determined configuration, wherein the pre-determined configuration forms an air pocket within the heat and fire protective item. The transformable fiber is cooled below its transformation temperature to revert the transformable fiber back to the new shaped configuration at the first crystal structure.
Abstract:
A virtual reality viewer may be integrated with printed materials, such as pamphlets, flyers, magazines, or books. A user may be able to review the printed material regarding the advertised products or services and then activate a virtual reality scene on an electronic display, such as the user's mobile device, that provides the user with more information regarding the products or services. The virtual reality viewer may be attached to pages in the printed materials and constructed in a manner such that the viewer pops up when the pages are opened. The user may place a mobile device in the viewer and/or access an integrated display to view a virtual reality scene related to content in the printed materials.
Abstract:
Soluble, self-assembling collagens derived from tissues are extensively characterized such that one can predict and customize the final collagen-fibril matrix with respect to fibril microstructure (i.e., fibril density, interfibril branching), viscoelasticity and proteolytic degradability. As shown herein these matrices template and direct the deposition of mesoporous silica at the level of individual collagen fibrils. The fibril density, silicic acid concentration, and time of exposure to silicifying solution were varied and the resulting hybrid materials were analyzed by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and rheology. Microstructural properties of the collagen-fibril template are preserved in the silica surface of hybrid materials. Results for three different collagen fibril densities, corresponding to shear storage moduli of 200 Pa, 1000 Pa, and 1600 Pa, indicate that increased fibril density increases the absolute amount of templated silica when all other silica synthesis conditions are kept constant. The mechanical properties of the hybrid material are dominated by the presence of the silica coating rather than the starting collagen matrix stiffness.
Abstract:
A method for registering ultrasound (US) and computed tomography (CT) images, comprising: receiving US and CT images representative of a body portion comprising blood vessels and an initial approximate transform; enhancing the blood vessels in the US and CT images, thereby obtaining an enhanced US and CT images; creating a point-set for a given one of the enhanced US and CT images; determining a final transform between the point-set and the other one of the enhanced US and CT images using the initial transform; applying the final transform to a given one of the US and CT images to align together a coordinate system of the US image and a coordinate system of the CT image, thereby obtaining a transformed image; and outputting the transformed image.
Abstract:
Disclosed is a counterbalance apparatus, and a method for counterbalancing using an apparatus, having a center of motion that is internal or external to the apparatus. The apparatus and method are adapted to support a payload, having a load vector applied in a direction of the vector or gravity, that is positioned distal to the center of motion. The apparatus includes a gimbal adapted to support the payload and allow for its rotational movement about the center of motion generating a load torque therefrom, and a resilient member adapted to engage the gimbal and supply a support torque to counterbalance the load torque. The method includes a step of supporting the payload with a gimbal adapted to allow rotational movement of the payload about the center of motion to generate a load torque therefrom, and a step of configuring a resilient member to engage the gimbal and supply a support torque to counterbalance the load torque.