Abstract:
A high performance concrete composition comprising: (i) at least one Class C fly ash, (ii) at least one calcium aluminate cement, (iii) at least one aggregate, and (iv) water.
Abstract:
Systems and methods for improving load energy forecasting in the presence of distributed energy resources in which a revised load forecast is calculated based on forecasted meteorological conditions data, forecasted wind and solar energy, forecasted load data, time data and time-series variables determined based on an analysis of the historical data. In exemplary embodiments, the revised load forecast is provided to energy management computer systems to enable appropriate levels of generation of conventional and renewable energy generation within the electric power grid.
Abstract:
An embodiment includes a Class C fly ash (CFA) cementitious composition with a controllable setting time comprising at least one Class C fly ash; at least one alkali hydroxide; at least one source of phosphate; and water. Alternate embodiments include a Class C fly ash (CFA) cementitious composition with a solid activator comprising at least one Class C fly ash; at least one alkali carbonate; at least one source of phosphate; and water.
Abstract:
A computer system and method for improving the accuracy of predictions of the amount of renewable energy, such as solar energy and wind energy, available to an electric utility, and/or refine such predictions, by providing improved integration of meteorological forecasts. Coefficient values are calculated for a renewable energy generation model by performing a regression analysis with the forecasted level of renewable energy posted by the utility, forecasted weather conditions and measures of seasonality as explanatory variables. Accuracy is further enhanced through the inclusion of a large number of time series variables that reflect the systematic nature of the energy/weather system. The model also uses the original forecast posted by the system operator as well as variables to control for season.
Abstract:
Bivalent immunogenic compositions against anthrax and plague are disclosed herein. One bivalent immunogenic composition comprises a triple fusion protein containing three antigens, F1 and V from Yersinia pestis and PA antigen from Bacillus anthracia fused in-frame and retaining structural and functional integrity of all three antigens. Another bivalent immunogenic composition comprises bacteriophage nanoparticles arrayed with these three antigens on the capsid surface of the bacteriophage nanoparticles. These bivalent immunogenic compositions are able to elicit robust immune response in a subject administered said the bivalent immunogenic compositions and provide protection to the subject against sequential or simultaneous challenge with both anthrax and plague pathogens.
Abstract:
The present disclosure provides a geopolymer composition having a controllable setting time comprising: at least one reactive aluminosilicate; at least one retarder; and at least one alkali silicate activator solution.
Abstract:
An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
Abstract:
An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
Abstract:
An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
Abstract:
A geopolymer composite binder is provided herein, the composite binder including (i) at least one fly ash material having less than or equal to 15 wt % of calcium oxide; (ii) at least one gelation enhancer; and (iii) at least one hardening enhancer having a different composition from a composition of the at least one fly ash material.