Abstract:
The present invention relates to a control system for a refuse vehicle and a method for controlling a refuse vehicle provided with at least one refuse container location sensor, at least one vehicle speed control, and one or more electronics. The one or more electronics receive and process signals from the at least one refuse container location sensor and outputs a control signal to the at least one vehicle speed control to stop the refuse vehicle at a predetermined location with respect to a refuse container.
Abstract:
A truck includes a frame, an operator cab on the frame and a drive axle having a differential. The differential can be connected to a drive shaft. A fairing for directing air flow around the differential is attached to the frame forward of the drive axle and forward of the differential. The fairing can have a non-deflected position and a deflected position.
Abstract:
A self-adjusting, self-damping air spring having a first air spring disposed between a cab and a frame of a vehicle and a second air spring in fluid communication with the first air spring. The second air spring positioned relative to the first to provide an opposition force in response to a change in height of the first air spring. This change in height corresponds to a change in displacement between the cab and the frame. The opposition force provided by the second air spring acting to dampen the changes in displacement.
Abstract:
The present invention relates to a vehicle provided with a sprung mass, including a vehicle frame, at least one axle provided with first and second ends, and a suspension system provided with a mechanical springs and leveling springs. The mechanical springs connect the axle ends to the frame and are provided with a spring rate in a rebound direction that is greater than or substantially equal to a spring rate in a jounce direction. The leveling springs are configured to support the sprung mass at one or more sprung mass load points, whereby the first and second mechanical springs may become substantially unloaded by the sprung mass of the vehicle at the one or more sprung mass load points.
Abstract:
A truck for pulling a semi-trailer includes an operator cab positioned on a frame and a fifth wheel mounted on the frame for receiving an underside of the semi-trailer. The trailer when attached to the truck defines a gap between a forward most portion of the semi-trailer and rearward most portion of the operator cab. A fairing can be located on the frame, aft of the operator cab and forward of at least a portion of the fifth wheel. The fairing can block at least a portion of the air flow attempting to enter the gap from below the frame.