Abstract:
PURPOSE: An optical amplifier system of 1.6 micrometer band is provided to be capable of being used in 1600-1650nm band using near infrared rays radiated from amorphous material having praseodymium ions(Pr+3) added. CONSTITUTION: The optical amplifier system comprises optical material with representative substantial phonon energy of 320 cmexp(-1), praseodymium ions(Pr+3) doped into the optical material, and an exciter for inducting fluorescent transition of 1.6 micrometer band by pumping the optical material. In addition, the optical amplifier system may further comprise erbium ions as a synthesizer doped into the optical material. The adding amount of the praseodymium ions(Pr+3) is substantially 0.1 mole% or less. Further, it is preferable that the optical material is praseodymium system glass.
Abstract:
PURPOSE: A two-stage reflective optical fiber amplifier is provided to maintain a high gain characteristic and a low noise characteristic by improving a structure of a reflective optical fiber amplifier. CONSTITUTION: An input stage(21) receives signal light. An optical isolator(22) is used for removing noise due to reflection by passing forward signal light and intercepting backward signal light. A pump light source(23) generates pump light. A WDM(Wavelength Division Multiplexing) coupler(24) is used for diving or coupling the signal light and the pump light. The first EDF(Erbium Doped Filter)(25) and the second EDF(27) are excited by the pump light. A mirror(28) is used for reflecting the signal light and the pump light passing the first EDF(25) and the second EDF(27). An optical circulator(26) is located between the first EDF(25) and the second EDF(27) and outputs the reflected amplified signal light.
Abstract:
PURPOSE: A structure of an optical cascade Raman laser is provided which employs a small number of optical elements, selects high-efficiency output wavelength with a narrow line width, and easily varies the wavelength, obtaining stabilized laser operation. CONSTITUTION: A structure of an optical cascade Raman laser includes a pump source(100) for emitting pump light, an optical fiber(15) causing Raman dispersion for the pump source, and a wavelength division multiplexing optical fiber coupler(13) constructing an inner resonator for a light beam with a wavelength secondary-stock-frequency-shifted according to the Raman dispersion of the optical fiber. The structure further has another WDM optical fiber coupler(12) constructing the inner resonator for a light beam with a wavelength first- and third-stock-frequency-shifted according to the Raman dispersion of the optical fiber, and a short-period optical fiber grating(16) for selecting and reflecting a wavelength fourth-stock-frequency-shifted from the output wavelength inside the inner resonator. The structure also has a long-period optical fiber grating(14) for damaging the fifth-stock-frequency-shifted wavelength in the inner resonator, the first means for transmitting the pump light emitted from the pump source but reflecting the light beam with the fourth-stock-frequency-shifted output wavelength, and the second means for reflecting the pump light but transmitting the light with the output wavelength.
Abstract:
PURPOSE: A method for driving an amplifier and a thulium doped fiber amplifier using the method are provided to effectively reverse the density between (¬3)H4-(¬3)F4 level by radiating the first pump light together with the second pump light towards an optical fiber. CONSTITUTION: An optical device using a thulium doped fiber amplifier comprises a core(21) made of glass to which thulium ions are added. An internal cladding(22) is provided to surround the core(21). The internal cladding(22) has a refraction rate higher than the refraction rate of the core(21) and is made of glass to which neodymium ions are added. An outer cladding(23) is provided to surround the internal cladding(22). The outer cladding(23) has a refraction rate higher than the refraction rate of the internal cladding(22). An optical grating is provided at front and rear portions of the optical fiber.
Abstract:
본 발명은 광섬유 모드 록킹 레이저에 관한 것이다. 본 발명은 펌프 광원에 의해 상하 두 에너지 준위간에 반전 분포를 이루고 순차적으로 소요 광파를 발진시키기 위한 이득 매질 첨가 광섬유와, 상기 펌프 광원의 파장은 투과시키며 상기 이득 매질 첨가 광섬유에서 펌프 광원에 의해 발진된 광파의 파장에 대해서는 원편광 반사경으로 작용하도록 하기 위한 콜레스테릭 액정 원편광 거울과, 상기 이득 매질 첨가 광섬유에서 발진되어 진행되는 광의 편광 상태를 조절하기 위한 편광 조절기와, 상기 편광 조절기를 지나 진행하는 광에 비선형 효과를 주기 위한 분산 천이 광섬유와, 상기 진행되는 광의 일부는 투과시켜 출력하고 일부는 반사시켜 공진기가 형성되도록 하기 위한 광섬유 레이저 출력경을 포함하여 이루어진다. 본 발명에 의하면 단순한 구조를 통해서 적은 부품수를 가지고 효과적으로 초단 펄스를 생성할 수 있으므로 경제성을 향상시킬 수 있다.
Abstract:
PURPOSE: A multi-wavelength channel transmission-type optical filter is to reduce a transmission wavelength width using a Mach-Zehnder interferometer and control the number of wavelength channels and the wavelength channel intervals, thereby improving a selection characteristic of multi-wavelength channels. CONSTITUTION: A multi-wavelength channel transmission-type optical filter comprises the first optical fiber coupler(11), the optical fiber length control unit(12), an optical fiber(13), the second optical fiber coupler(14) and an optical isolator(15). The first optical fiber coupler divides an optical signal having a wide wavelength width into two optical signals. The optical fiber length control unit receives one divided optical signal and controls a transmission wavelength interval. The other divided optical signal is transmitted through the optical fiber having a predetermined length. The second optical fiber coupler receives the optical signals output from the optical fiber length control unit and the optical fiber. The optical isolator couples the output signals of the second optical fiber coupler to reduce the transmission wavelength width much more.
Abstract:
본 발명은 광섬유 라만 증폭기 구조에 관한 것으로 광섬유의 비선형 광학 효과인 스톡 주파수 천이를 이용하고 2단 광증폭기의 한 가운데에 파장분할다중 광 커플러와 광 아이솔레이트로 분리된 2단 광섬유 비선형 라만 증폭기 구조로서, 2단 중 한 단의 비선형 광섬유를 연차적으로 스톡 주파수 천이된 라만 레이저 공진기로 사용함과 동시에 라만 광증폭기로 사용하는 구조로 구성되어 비선형 광섬유의 사용 효율을 높여 경제성이 있도록 하며, 펌프광 파장에 따라 여러가지 형태의 구성이 가능하고 여러 파장대의 광증폭기로 사용이 가능하도록 함으로써 펌프광의 선택에 따라 여러 파장대에서의 광증폭기로 사용이 가능하고, 여러 파장대의 대용량 광통신 기술의 발전을 유도하며, 넓은 파장 영역에서 작동이 가능한 비선형 라만 레이저의 확보와 더� �어 다른 응용 분야의 발전에 이바지할 수 있는 효과가 있다.