Abstract:
The present invention discloses a single cell, a battery module, a power battery, and an electric vehicle. The single cell (4100) includes a case, a battery cell accommodated in the case, an electrode terminal (4101) electrically connected to the battery cell, and a cover plate (4102) for encapsulating the case. The electrode terminal (4101) is disposed in the cover plate (4102). The electrode terminal includes a battery post (4104) passing through the cover plate (4102) and electrically connected to the battery cell by using an internal guide member (4196). The single cell further includes a current interrupt device (4200) mounted in the battery post (4104). The current interrupt device (4200) has a flipping member (4202) in communication with gas inside the case. The flipping member (4202) is connected to an outer end surface of the battery post (4104) by using a connection point. The connection point can be disconnected under action of air pressure.
Abstract:
A power battery pack and an electrical vehicle including the same are provided. The power battery pack includes: a tray; a plurality of battery modules disposed in the tray, and including a first battery module disposed on the tray and a second battery module stacked on the first battery module; a second module cooling plate disposed outside of the second battery module, and including a first bottom plate and a first side plate; and a first side heat-conducting plate disposed at an outer side of the first side plate and heat-conductively connected therewith, wherein both the first bottom plate and the first side plate have a heat pipe disposed therein respectively, the heat pipes of the first bottom plate and the first side plate are in communication with each other; and the first side heat-conducting plate has a heat pipe disposed therein and heat-conductively connected to the tray.
Abstract:
An electrochemical storage cell having a coiled core is disclosed. The coiled core includes a cathode sheet, an anode sheet, and a separator sheet. An anode connector is connected with the anode sheet at a first end of the coiled core and a cathode connector is connected with the cathode sheet at a second, opposite end of the coiled core. The coiled core has a length Lcore and a width Wcore and each connector has a width Wconnector. The length of the coiled core Lcore, width of the coiled core Wcore, and width of each connector Wconnector have the relationship 0core-Wconnector)/Lcore
Abstract:
A power battery module includes a battery accommodating assembly having a plurality of separators, the separator comprising: a separator body; a left cover; and a right cover, in which adjacent separators are detachably connected with each other; a battery group; a power connection member, a line snap-fit, a power connection line and a signal collection assembly.
Abstract:
A battery accommodating assembly (100) and a power battery module (100) are provided. The battery accommodating assembly (100) includes a plurality of separators (10). Adjacent separators (10) are detachably connected with each other via a snapping structure (60) and define a battery chamber.
Abstract:
A battery includes a shell, a core and a protection component received in the shell. The core includes a first electrode tab connected to a first current collector and a second electrode tab connected to a second current collector of the core. The protection component includes two insulating layers and a conducting layer disposed between two insulating layers. The conducting layer defines a first end electrically connected to the first electrode tab and a second end configured as a free end, and an outmost current collector of the core is configured by the second current collector.
Abstract:
A power battery assembly (1) comprises a battery circuit and a circuit protecting unit (100). The circuit protecting unit (100) is connected in series with the battery unit. The circuit protecting unit (100) comprises a relay (2) and a current sensing unit (3) connected in series with the battery circuit, a switching unit (5) connected with the relay (2) for controlling the switching of the relay (2), and a controller (4) connected with the switching unit (5) and the current sensing unit (3)to control the switching on or switching off the switching unit (5) based on comparison of the current value detected by the current sensing unit (3) and sent to the controller (4) with a first predetermined current value. An electric vehicle is also provided.
Abstract:
A connector between battery modules and a battery system comprising the same are provided. The connector between battery modules comprises: first and second connecting pieces (21, 22), the first connecting piece (21) being electrically connected to an output end of a first battery module, the second connecting piece (22) being electrically connected to an output end of a second battery module adjacent to the first battery module, and the first connecting piece (21) and the second connecting piece (22) being electrically connected to each other so as to form an electrically-connecting part therebetween; a clamping unit configured to clamp the electrically-connecting part; and a support (5), the clamping unit being fixed onto the support (5) so as to support the electrically-connecting part between the first connecting piece (21) and the second connecting piece (22).