Abstract:
A modular toilet is disclosed comprising a toilet shell and a hydraulic core. The hydraulic core module is a separate unit from the toilet shell module and may be non-symmetrical with the internal and external form of the shell. The core module comprises a toilet bowl connected to a siphon drain comprising a weir. The drain may be a vertical loop drain. The toilet shell and the hydraulic core may comprise mutual sealing surfaces. The drain may comprise openings for connection to a toilet ventilation system.
Abstract:
A dual modulation network is disclosed. The dual modulation network includes a primary network hub (PNH) having a PNH Long range transceiver and a PNH microcontroller. The PNH microcontroller has communication firmware for long range spread spectrum (SS) and narrowband frequency shift keying (FSK) signal communication via the PNH Long range transceiver, and includes a PNH clock signal. The dual modulation network also includes a peripheral device (PD). The PD includes an actuation mechanism, a PD Long range transceiver, and a PD microcontroller. The PD microcontroller has actuation firmware, communication firmware for communication via the PD Long range transceiver, and location firmware, and includes a clock signal. The location firmware instructs the PD long range transceiver to transmit a location signal encoded with a PD transmit time stamp notifying a receiving device of the time the PD transmitted the location signal.
Abstract:
A system includes multiple lifting devices, where each lifting device includes a drum to draw in or let out a line, and a motor and transmission coupled to the drum to apply a torque thereto. A grouping module groups the lifting devices for synchronized operation in lifting a shared load. A load distribution management module monitors an amount of weight carried by each of the grouped lifting devices and provides feedback to a user to enable more optimal distribution of the shared load amongst the grouped lifting devices.
Abstract:
In one aspect of the invention, a high impact resistant tool includes a superhard material bonded to a cemented metal carbide substrate at a non-planar interface. The superhard material has a substantially pointed geometry with a sharp apex having a radius of curvature of 0.050 to 0.125 inches. The superhard material also has a thickness of 0.100 to 0.500 inches thickness from the apex to a central region of the cemented metal carbide substrate.
Abstract:
An apparatus includes a motor and a drum rotated by the motor to draw in or let out a line from the drum. The drum includes a groove formed in an outer surface thereof to accommodate the line. In certain embodiments, the motor and drum are quickly and easily detachable from a structure by way of a flange and mounting bracket. The flange and mounting bracket have holes which are coaxially aligned. A pin or other fastener is used to join the flange and mounting bracket together.
Abstract:
A method for calibrating an automated window covering includes electromechanically actuating a window covering and measuring electrical current required to actuate the window covering. The method further measures movement of the window covering, where such movement includes one or more of a change in position and velocity of the window covering. The method estimates a size (e.g., height, width, area, etc.) of the window covering and/or an amount of force required to actuate the window covering based on the measured electrical current and movement. A corresponding apparatus is also disclosed herein.
Abstract:
A method in accordance with the invention includes prompting a user to align a mobile device with a geometric feature (e.g., a window sill, corner, etc.) of a window. The method further determines a position and orientation of the window using sensors of the mobile device. Based on the position and orientation of the window, the method determines a position of the sun over time relative to the window. The method automatically adjusts a window covering of the window to take into account the position of the sun over time. For example, the method may automatically tilt slats of a window blind or open or close a window covering to take into account the position of the sun over time. A corresponding system is also disclosed herein.
Abstract:
An apparatus in accordance with the invention includes a motor and a gearbox coupled to the motor and comprising an output shaft configured to actuate a window covering. A position encoder, directly driven by the output shaft, is configured to measure at least one of an angular position and a number of rotations of the output shaft. The angular position and number of rotations may be used to calculate an angular position of slats of a window blind and/or an amount a window covering is opened or closed. A corresponding method is also disclosed herein.
Abstract:
A system includes multiple lifting devices, where each lifting device includes a drum to draw in or let out a line, and a motor and transmission coupled to the drum to apply a torque thereto. A grouping module groups the lifting devices for synchronized operation in lifting a shared load. A load distribution management module monitors an amount of weight carried by each of the grouped lifting devices and provides feedback to a user to enable more optimal distribution of the shared load amongst the grouped lifting devices.
Abstract:
An apparatus includes a drum to draw in or let out a line and a motor and transmission coupled to the drum to apply a torque thereto. A cable is incorporated into the line to transport at least one of power and data along the line to an object or device at the end of the line. In certain embodiments, the cable is configured to support all or a portion of the load. In other embodiments, the line includes a load-bearing wire separate from the cable which is configured to support all or a portion of the load.